kute.js/dist/kute.esm.js
thednp 2a5bac2bb3 Changes V2.2.0:
* major JSDoc write up
* removed ESLint `no-bitwise` exception, it only applies to specific functions and not the entire code
* the `SVGCubicMorph` component will remove un-necessary `Z` path commands when is the case for better out of the box animation
* fixed a minor disambiguation with `filterEffects` and `drop-shadow` property and its `dropshadow` interpolation function
* TypeScript strong: all files are modules, easy to implement in any third party app
* updated `CubicBezier` and SVGPathCommander
* code cleanup
2021-12-08 23:43:31 +02:00

4408 lines
125 KiB
JavaScript

/*!
* KUTE.js Standard v2.2.0alpha2 (http://thednp.github.io/kute.js)
* Copyright 2015-2021 © thednp
* Licensed under MIT (https://github.com/thednp/kute.js/blob/master/LICENSE)
*/
/**
* Creates cubic-bezier easing functions.
*
* @class
*/
class CubicBezier {
/**
* @constructor
* @param {number} p1x - first point horizontal position
* @param {number} p1y - first point vertical position
* @param {number} p2x - second point horizontal position
* @param {number} p2y - second point vertical position
* @param {string=} functionName - an optional function name
* @returns {(t: number) => number} a new CubicBezier easing function
*/
constructor(p1x, p1y, p2x, p2y, functionName) {
// pre-calculate the polynomial coefficients
// First and last control points are implied to be (0,0) and (1.0, 1.0)
/** @type {number} */
this.cx = 3.0 * p1x;
/** @type {number} */
this.bx = 3.0 * (p2x - p1x) - this.cx;
/** @type {number} */
this.ax = 1.0 - this.cx - this.bx;
/** @type {number} */
this.cy = 3.0 * p1y;
/** @type {number} */
this.by = 3.0 * (p2y - p1y) - this.cy;
/** @type {number} */
this.ay = 1.0 - this.cy - this.by;
/** @type {(t: number) => number} */
const BezierEasing = (t) => this.sampleCurveY(this.solveCurveX(t));
// this function needs a name
Object.defineProperty(BezierEasing, 'name', { writable: true });
BezierEasing.name = functionName || `cubic-bezier(${[p1x, p1y, p2x, p2y]})`;
return BezierEasing;
}
/**
* @param {number} t - progress [0-1]
* @return {number} - sampled X value
*/
sampleCurveX(t) {
return ((this.ax * t + this.bx) * t + this.cx) * t;
}
/**
* @param {number} t - progress [0-1]
* @return {number} - sampled Y value
*/
sampleCurveY(t) {
return ((this.ay * t + this.by) * t + this.cy) * t;
}
/**
* @param {number} t - progress [0-1]
* @return {number} - sampled curve derivative X value
*/
sampleCurveDerivativeX(t) {
return (3.0 * this.ax * t + 2.0 * this.bx) * t + this.cx;
}
/**
* @param {number} x - progress [0-1]
* @return {number} - solved curve X value
*/
solveCurveX(x) {
let t0;
let t1;
let t2;
let x2;
let d2;
let i;
const epsilon = 1e-5; // Precision
// First try a few iterations of Newton's method -- normally very fast.
for (t2 = x, i = 0; i < 32; i += 1) {
x2 = this.sampleCurveX(t2) - x;
if (Math.abs(x2) < epsilon) return t2;
d2 = this.sampleCurveDerivativeX(t2);
if (Math.abs(d2) < epsilon) break;
t2 -= x2 / d2;
}
// No solution found - use bi-section
t0 = 0.0;
t1 = 1.0;
t2 = x;
if (t2 < t0) return t0;
if (t2 > t1) return t1;
while (t0 < t1) {
x2 = this.sampleCurveX(t2);
if (Math.abs(x2 - x) < epsilon) return t2;
if (x > x2) t0 = t2;
else t1 = t2;
t2 = (t1 - t0) * 0.5 + t0;
}
// Give up
return t2;
}
}
/**
* The KUTE.js Execution Context
*/
const KEC = {};
const Tweens = [];
let gl0bal;
if (typeof global !== 'undefined') gl0bal = global;
else if (typeof window !== 'undefined') gl0bal = window.self;
else gl0bal = {};
const globalObject = gl0bal;
// KUTE.js INTERPOLATE FUNCTIONS
// =============================
const interpolate = {};
// schedule property specific function on animation start
// link property update function to KUTE.js execution context
const onStart = {};
// Include a performance.now polyfill.
// source https://github.com/tweenjs/tween.js/blob/master/src/Now.ts
let performanceNow;
// In node.js, use process.hrtime.
// eslint-disable-next-line
// @ts-ignore
if (typeof self === 'undefined' && typeof process !== 'undefined' && process.hrtime) {
performanceNow = () => {
// eslint-disable-next-line
// @ts-ignore
const time = process.hrtime();
// Convert [seconds, nanoseconds] to milliseconds.
return time[0] * 1000 + time[1] / 1000000;
};
} else if (typeof self !== 'undefined' && self.performance !== undefined && self.performance.now !== undefined) {
// In a browser, use self.performance.now if it is available.
// This must be bound, because directly assigning this function
// leads to an invocation exception in Chrome.
performanceNow = self.performance.now.bind(self.performance);
} else if (typeof Date !== 'undefined' && Date.now) {
// Use Date.now if it is available.
performanceNow = Date.now;
} else {
// Otherwise, use 'new Date().getTime()'.
performanceNow = () => new Date().getTime();
}
const now = performanceNow;
const Time = {};
Time.now = now;
// eslint-disable-next-line import/no-mutable-exports -- impossible to satisfy
let Tick = 0;
/**
*
* @param {number | Date} time
*/
const Ticker = (time) => {
let i = 0;
while (i < Tweens.length) {
if (Tweens[i].update(time)) {
i += 1;
} else {
Tweens.splice(i, 1);
}
}
Tick = requestAnimationFrame(Ticker);
};
// stop requesting animation frame
function stop() {
setTimeout(() => { // re-added for #81
if (!Tweens.length && Tick) {
cancelAnimationFrame(Tick);
Tick = null;
Object.keys(onStart).forEach((obj) => {
if (typeof (onStart[obj]) === 'function') {
if (KEC[obj]) delete KEC[obj];
} else {
Object.keys(onStart[obj]).forEach((prop) => {
if (KEC[prop]) delete KEC[prop];
});
}
});
Object.keys(interpolate).forEach((i) => {
if (KEC[i]) delete KEC[i];
});
}
}, 64);
}
// render update functions
// =======================
const Render = {
Tick, Ticker, Tweens, Time,
};
Object.keys(Render).forEach((blob) => {
if (!KEC[blob]) {
KEC[blob] = blob === 'Time' ? Time.now : Render[blob];
}
});
globalObject._KUTE = KEC;
// all supported properties
const supportedProperties = {};
const defaultValues = {};
const defaultOptions$1 = {
duration: 700,
delay: 0,
easing: 'linear',
repeat: 0,
repeatDelay: 0,
yoyo: false,
resetStart: false,
offset: 0,
};
// used in preparePropertiesObject
const prepareProperty = {};
// check current property value when .to() method is used
const prepareStart = {};
// checks for differences between the processed start and end values,
// can be set to make sure start unit and end unit are same,
// stack transforms, process SVG paths,
// any type of post processing the component needs
const crossCheck = {};
// schedule property specific function on animation complete
const onComplete = {};
// link properties to interpolate functions
const linkProperty = {};
const Objects = {
supportedProperties,
defaultValues,
defaultOptions: defaultOptions$1,
prepareProperty,
prepareStart,
crossCheck,
onStart,
onComplete,
linkProperty,
};
// util - a general object for utils like rgbToHex, processEasing
const Util = {};
/**
* KUTE.add(Tween)
*
* @param {KUTE.Tween} tw a new tween to add
*/
const add = (tw) => Tweens.push(tw);
/**
* KUTE.remove(Tween)
*
* @param {KUTE.Tween} tw a new tween to add
*/
const remove = (tw) => {
const i = Tweens.indexOf(tw);
if (i !== -1) Tweens.splice(i, 1);
};
/**
* KUTE.add(Tween)
*
* @return {KUTE.Tween[]} tw a new tween to add
*/
const getAll = () => Tweens;
/**
* KUTE.removeAll()
*/
const removeAll = () => { Tweens.length = 0; };
/**
* linkInterpolation
* @this {KUTE.Tween}
*/
function linkInterpolation() { // DON'T change
Object.keys(linkProperty).forEach((component) => {
const componentLink = linkProperty[component];
const componentProps = supportedProperties[component];
Object.keys(componentLink).forEach((fnObj) => {
if (typeof (componentLink[fnObj]) === 'function' // ATTR, colors, scroll, boxModel, borderRadius
&& Object.keys(this.valuesEnd).some((i) => (componentProps && componentProps.includes(i))
|| (i === 'attr' && Object.keys(this.valuesEnd[i]).some((j) => componentProps && componentProps.includes(j))))) {
if (!KEC[fnObj]) KEC[fnObj] = componentLink[fnObj];
} else {
Object.keys(this.valuesEnd).forEach((prop) => {
const propObject = this.valuesEnd[prop];
if (propObject instanceof Object) {
Object.keys(propObject).forEach((i) => {
if (typeof (componentLink[i]) === 'function') { // transformCSS3
if (!KEC[i]) KEC[i] = componentLink[i];
} else {
Object.keys(componentLink[fnObj]).forEach((j) => {
if (componentLink[i] && typeof (componentLink[i][j]) === 'function') { // transformMatrix
if (!KEC[j]) KEC[j] = componentLink[i][j];
}
});
}
});
}
});
}
});
});
}
const internals = {
add,
remove,
getAll,
removeAll,
stop,
linkInterpolation,
};
/**
* getInlineStyle
* Returns the transform style for element from
* cssText. Used by for the `.to()` static method.
*
* @param {Element} el target element
* @returns {object}
*/
function getInlineStyle(el) {
// if the scroll applies to `window` it returns as it has no styling
if (!el.style) return false;
// the cssText | the resulting transform object
const css = el.style.cssText.replace(/\s/g, '').split(';');
const transformObject = {};
const arrayFn = ['translate3d', 'translate', 'scale3d', 'skew'];
css.forEach((cs) => {
if (/transform/i.test(cs)) {
// all transform properties
const tps = cs.split(':')[1].split(')');
tps.forEach((tpi) => {
const tpv = tpi.split('(');
const tp = tpv[0];
// each transform property
const tv = tpv[1];
if (!/matrix/.test(tp)) {
transformObject[tp] = arrayFn.includes(tp) ? tv.split(',') : tv;
}
});
}
});
return transformObject;
}
/**
* getStyleForProperty
*
* Returns the computed style property for element for .to() method.
* Used by for the `.to()` static method.
*
* @param {Element} elem
* @param {string} propertyName
* @returns {string}
*/
function getStyleForProperty(elem, propertyName) {
let result = defaultValues[propertyName];
const styleAttribute = elem.style;
const computedStyle = getComputedStyle(elem) || elem.currentStyle;
const styleValue = styleAttribute[propertyName] && !/auto|initial|none|unset/.test(styleAttribute[propertyName])
? styleAttribute[propertyName]
: computedStyle[propertyName];
if (propertyName !== 'transform' && (propertyName in computedStyle || propertyName in styleAttribute)) {
result = styleValue;
}
return result;
}
/**
* prepareObject
*
* Returns all processed valuesStart / valuesEnd.
*
* @param {Element} obj the values start/end object
* @param {string} fn toggles between the two
*/
function prepareObject(obj, fn) { // this, props object, type: start/end
const propertiesObject = fn === 'start' ? this.valuesStart : this.valuesEnd;
Object.keys(prepareProperty).forEach((component) => {
const prepareComponent = prepareProperty[component];
const supportComponent = supportedProperties[component];
Object.keys(prepareComponent).forEach((tweenCategory) => {
const transformObject = {};
Object.keys(obj).forEach((tweenProp) => {
// scroll, opacity, other components
if (defaultValues[tweenProp] && prepareComponent[tweenProp]) {
propertiesObject[tweenProp] = prepareComponent[tweenProp]
.call(this, tweenProp, obj[tweenProp]);
// transform
} else if (!defaultValues[tweenCategory] && tweenCategory === 'transform'
&& supportComponent.includes(tweenProp)) {
transformObject[tweenProp] = obj[tweenProp];
// allow transformFunctions to work with preprocessed input values
} else if (!defaultValues[tweenProp] && tweenProp === 'transform') {
propertiesObject[tweenProp] = obj[tweenProp];
// colors, boxModel, category
} else if (!defaultValues[tweenCategory]
&& supportComponent && supportComponent.includes(tweenProp)) {
propertiesObject[tweenProp] = prepareComponent[tweenCategory]
.call(this, tweenProp, obj[tweenProp]);
}
});
// we filter out older browsers by checking Object.keys
if (Object.keys(transformObject).length) {
propertiesObject[tweenCategory] = prepareComponent[tweenCategory]
.call(this, tweenCategory, transformObject);
}
});
});
}
/**
* getStartValues
*
* Returns the start values for to() method.
* Used by for the `.to()` static method.
*
* @this {KUTE.Tween} the tween instance
*/
function getStartValues() {
const startValues = {};
const currentStyle = getInlineStyle(this.element);
Object.keys(this.valuesStart).forEach((tweenProp) => {
Object.keys(prepareStart).forEach((component) => {
const componentStart = prepareStart[component];
Object.keys(componentStart).forEach((tweenCategory) => {
// clip, opacity, scroll
if (tweenCategory === tweenProp && componentStart[tweenProp]) {
startValues[tweenProp] = componentStart[tweenCategory]
.call(this, tweenProp, this.valuesStart[tweenProp]);
// find in an array of properties
} else if (supportedProperties[component]
&& supportedProperties[component].includes(tweenProp)) {
startValues[tweenProp] = componentStart[tweenCategory]
.call(this, tweenProp, this.valuesStart[tweenProp]);
}
});
});
});
// stack transformCSS props for .to() chains
// also add to startValues values from previous tweens
Object.keys(currentStyle).forEach((current) => {
if (!(current in this.valuesStart)) {
startValues[current] = currentStyle[current] || defaultValues[current];
}
});
this.valuesStart = {};
prepareObject.call(this, startValues, 'start');
}
var Process = {
getInlineStyle,
getStyleForProperty,
getStartValues,
prepareObject,
};
const connect = {};
/** @type {KUTE.TweenBase | KUTE.Tween | KUTE.TweenExtra} */
connect.tween = null;
connect.processEasing = null;
const Easing = {
linear: new CubicBezier(0, 0, 1, 1, 'linear'),
easingSinusoidalIn: new CubicBezier(0.47, 0, 0.745, 0.715, 'easingSinusoidalIn'),
easingSinusoidalOut: new CubicBezier(0.39, 0.575, 0.565, 1, 'easingSinusoidalOut'),
easingSinusoidalInOut: new CubicBezier(0.445, 0.05, 0.55, 0.95, 'easingSinusoidalInOut'),
easingQuadraticIn: new CubicBezier(0.550, 0.085, 0.680, 0.530, 'easingQuadraticIn'),
easingQuadraticOut: new CubicBezier(0.250, 0.460, 0.450, 0.940, 'easingQuadraticOut'),
easingQuadraticInOut: new CubicBezier(0.455, 0.030, 0.515, 0.955, 'easingQuadraticInOut'),
easingCubicIn: new CubicBezier(0.55, 0.055, 0.675, 0.19, 'easingCubicIn'),
easingCubicOut: new CubicBezier(0.215, 0.61, 0.355, 1, 'easingCubicOut'),
easingCubicInOut: new CubicBezier(0.645, 0.045, 0.355, 1, 'easingCubicInOut'),
easingQuarticIn: new CubicBezier(0.895, 0.03, 0.685, 0.22, 'easingQuarticIn'),
easingQuarticOut: new CubicBezier(0.165, 0.84, 0.44, 1, 'easingQuarticOut'),
easingQuarticInOut: new CubicBezier(0.77, 0, 0.175, 1, 'easingQuarticInOut'),
easingQuinticIn: new CubicBezier(0.755, 0.05, 0.855, 0.06, 'easingQuinticIn'),
easingQuinticOut: new CubicBezier(0.23, 1, 0.32, 1, 'easingQuinticOut'),
easingQuinticInOut: new CubicBezier(0.86, 0, 0.07, 1, 'easingQuinticInOut'),
easingExponentialIn: new CubicBezier(0.95, 0.05, 0.795, 0.035, 'easingExponentialIn'),
easingExponentialOut: new CubicBezier(0.19, 1, 0.22, 1, 'easingExponentialOut'),
easingExponentialInOut: new CubicBezier(1, 0, 0, 1, 'easingExponentialInOut'),
easingCircularIn: new CubicBezier(0.6, 0.04, 0.98, 0.335, 'easingCircularIn'),
easingCircularOut: new CubicBezier(0.075, 0.82, 0.165, 1, 'easingCircularOut'),
easingCircularInOut: new CubicBezier(0.785, 0.135, 0.15, 0.86, 'easingCircularInOut'),
easingBackIn: new CubicBezier(0.6, -0.28, 0.735, 0.045, 'easingBackIn'),
easingBackOut: new CubicBezier(0.175, 0.885, 0.32, 1.275, 'easingBackOut'),
easingBackInOut: new CubicBezier(0.68, -0.55, 0.265, 1.55, 'easingBackInOut'),
};
/**
* Returns a valid `easingFunction`.
*
* @param {KUTE.easingFunction | string} fn function name or constructor name
* @returns {KUTE.easingFunction} a valid easingfunction
*/
function processBezierEasing(fn) {
if (typeof fn === 'function') {
return fn;
} if (typeof (Easing[fn]) === 'function') {
return Easing[fn];
} if (/bezier/.test(fn)) {
const bz = fn.replace(/bezier|\s|\(|\)/g, '').split(',');
return new CubicBezier(bz[0] * 1, bz[1] * 1, bz[2] * 1, bz[3] * 1); // bezier easing
}
// if (/elastic|bounce/i.test(fn)) {
// throw TypeError(`KUTE - CubicBezier doesn't support ${fn} easing.`);
// }
return Easing.linear;
}
connect.processEasing = processBezierEasing;
/**
* selector
*
* A selector utility for KUTE.js.
*
* @param {KUTE.selectorType} el target(s) or string selector
* @param {boolean | number} multi when true returns an array/collection of elements
* @returns {Element | Element[] | null}
*/
function selector(el, multi) {
try {
let requestedElem;
let itemsArray;
if (multi) {
itemsArray = el instanceof Array && el.every((x) => x instanceof Element);
requestedElem = el instanceof HTMLCollection || el instanceof NodeList || itemsArray
? el : document.querySelectorAll(el);
} else {
requestedElem = el instanceof Element || el === window // scroll
? el : document.querySelector(el);
}
return requestedElem;
} catch (e) {
throw TypeError(`KUTE.js - Element(s) not found: ${el}.`);
}
}
function queueStart() {
// fire onStart actions
Object.keys(onStart).forEach((obj) => {
if (typeof (onStart[obj]) === 'function') {
onStart[obj].call(this, obj); // easing functions
} else {
Object.keys(onStart[obj]).forEach((prop) => {
onStart[obj][prop].call(this, prop);
});
}
});
// add interpolations
linkInterpolation.call(this);
}
/**
* The `TweenBase` constructor creates a new `Tween` object
* for a single `HTMLElement` and returns it.
*
* `TweenBase` is meant to be used with pre-processed values.
*/
class TweenBase {
/**
* @param {Element} targetElement the target element
* @param {KUTE.tweenProps} startObject the start values
* @param {KUTE.tweenProps} endObject the end values
* @param {KUTE.tweenOptions} opsObject the end values
* @returns {TweenBase} the resulting Tween object
*/
constructor(targetElement, startObject, endObject, opsObject) {
// element animation is applied to
this.element = targetElement;
/** @type {boolean} */
this.playing = false;
/** @type {number?} */
this._startTime = null;
/** @type {boolean} */
this._startFired = false;
// type is set via KUTE.tweenProps
this.valuesEnd = endObject;
this.valuesStart = startObject;
// OPTIONS
const options = opsObject || {};
// internal option to process inline/computed style at start instead of init
// used by to() method and expects object : {} / false
this._resetStart = options.resetStart || 0;
// you can only set a core easing function as default
/** @type {KUTE.easingOption} */
this._easing = typeof (options.easing) === 'function' ? options.easing : connect.processEasing(options.easing);
/** @type {number} */
this._duration = options.duration || defaultOptions$1.duration; // duration option | default
/** @type {number} */
this._delay = options.delay || defaultOptions$1.delay; // delay option | default
// set other options
Object.keys(options).forEach((op) => {
const internalOption = `_${op}`;
if (!(internalOption in this)) this[internalOption] = options[op];
});
// callbacks should not be set as undefined
// this._onStart = options.onStart
// this._onUpdate = options.onUpdate
// this._onStop = options.onStop
// this._onComplete = options.onComplete
// queue the easing
const easingFnName = this._easing.name;
if (!onStart[easingFnName]) {
onStart[easingFnName] = function easingFn(prop) {
if (!KEC[prop] && prop === this._easing.name) KEC[prop] = this._easing;
};
}
return this;
}
/**
* Starts tweening
* @param {number?} time the tween start time
* @returns {TweenBase} this instance
*/
start(time) {
// now it's a good time to start
add(this);
this.playing = true;
this._startTime = typeof time !== 'undefined' ? time : KEC.Time();
this._startTime += this._delay;
if (!this._startFired) {
if (this._onStart) {
this._onStart.call(this);
}
queueStart.call(this);
this._startFired = true;
}
if (!Tick) Ticker();
return this;
}
/**
* Stops tweening
* @returns {TweenBase} this instance
*/
stop() {
if (this.playing) {
remove(this);
this.playing = false;
if (this._onStop) {
this._onStop.call(this);
}
this.close();
}
return this;
}
/**
* Trigger internal completion callbacks.
*/
close() {
// scroll|transformMatrix need this
Object.keys(onComplete).forEach((component) => {
Object.keys(onComplete[component]).forEach((toClose) => {
onComplete[component][toClose].call(this, toClose);
});
});
// when all animations are finished, stop ticking after ~3 frames
this._startFired = false;
stop.call(this);
}
/**
* Schedule another tween instance to start once this one completes.
* @param {KUTE.chainOption} args the tween animation start time
* @returns {TweenBase} this instance
*/
chain(args) {
this._chain = [];
this._chain = args.length ? args : this._chain.concat(args);
return this;
}
/**
* Stop tweening the chained tween instances.
*/
stopChainedTweens() {
if (this._chain && this._chain.length) this._chain.forEach((tw) => tw.stop());
}
/**
* Update the tween on each tick.
* @param {number} time the tick time
* @returns {boolean} this instance
*/
update(time) {
const T = time !== undefined ? time : KEC.Time();
let elapsed;
if (T < this._startTime && this.playing) { return true; }
elapsed = (T - this._startTime) / this._duration;
elapsed = (this._duration === 0 || elapsed > 1) ? 1 : elapsed;
// calculate progress
const progress = this._easing(elapsed);
// render the update
Object.keys(this.valuesEnd).forEach((tweenProp) => {
KEC[tweenProp](this.element,
this.valuesStart[tweenProp],
this.valuesEnd[tweenProp],
progress);
});
// fire the updateCallback
if (this._onUpdate) {
this._onUpdate.call(this);
}
if (elapsed === 1) {
// fire the complete callback
if (this._onComplete) {
this._onComplete.call(this);
}
// now we're sure no animation is running
this.playing = false;
// stop ticking when finished
this.close();
// start animating chained tweens
if (this._chain !== undefined && this._chain.length) {
this._chain.map((tw) => tw.start());
}
return false;
}
return true;
}
}
// Update Tween Interface
connect.tween = TweenBase;
/**
* The `KUTE.Tween()` constructor creates a new `Tween` object
* for a single `HTMLElement` and returns it.
*
* This constructor adds additional functionality and is the default
* Tween object constructor in KUTE.js.
*/
class Tween extends TweenBase {
/**
* @param {KUTE.tweenParams} args (*target*, *startValues*, *endValues*, *options*)
* @returns {Tween} the resulting Tween object
*/
constructor(...args) {
super(...args); // this calls the constructor of TweenBase
// reset interpolation values
this.valuesStart = {};
this.valuesEnd = {};
// const startObject = args[1];
// const endObject = args[2];
const [startObject, endObject, options] = args.slice(1);
// set valuesEnd
prepareObject.call(this, endObject, 'end');
// set valuesStart
if (this._resetStart) {
this.valuesStart = startObject;
} else {
prepareObject.call(this, startObject, 'start');
}
// ready for crossCheck
if (!this._resetStart) {
Object.keys(crossCheck).forEach((component) => {
Object.keys(crossCheck[component]).forEach((checkProp) => {
crossCheck[component][checkProp].call(this, checkProp);
});
});
}
// set paused state
/** @type {boolean} */
this.paused = false;
/** @type {number?} */
this._pauseTime = null;
// additional properties and options
/** @type {number?} */
this._repeat = options.repeat || defaultOptions$1.repeat;
/** @type {number?} */
this._repeatDelay = options.repeatDelay || defaultOptions$1.repeatDelay;
// we cache the number of repeats to be able to put it back after all cycles finish
/** @type {number?} */
this._repeatOption = this._repeat;
// yoyo needs at least repeat: 1
/** @type {KUTE.tweenProps} */
this.valuesRepeat = {}; // valuesRepeat
/** @type {boolean} */
this._yoyo = options.yoyo || defaultOptions$1.yoyo;
/** @type {boolean} */
this._reversed = false;
// don't load extra callbacks
// this._onPause = options.onPause || defaultOptions.onPause
// this._onResume = options.onResume || defaultOptions.onResume
// chained Tweens
// this._chain = options.chain || defaultOptions.chain;
return this;
}
/**
* Starts tweening, extended method
* @param {number?} time the tween start time
* @returns {Tween} this instance
*/
start(time) {
// on start we reprocess the valuesStart for TO() method
if (this._resetStart) {
this.valuesStart = this._resetStart;
getStartValues.call(this);
// this is where we do the valuesStart and valuesEnd check for fromTo() method
Object.keys(crossCheck).forEach((component) => {
Object.keys(crossCheck[component]).forEach((checkProp) => {
crossCheck[component][checkProp].call(this, checkProp);
});
});
}
// still not paused
this.paused = false;
// set yoyo values
if (this._yoyo) {
Object.keys(this.valuesEnd).forEach((endProp) => {
this.valuesRepeat[endProp] = this.valuesStart[endProp];
});
}
super.start(time);
return this;
}
/**
* Stops tweening, extended method
* @returns {Tween} this instance
*/
stop() {
super.stop();
if (!this.paused && this.playing) {
this.paused = false;
this.stopChainedTweens();
}
return this;
}
/**
* Trigger internal completion callbacks.
*/
close() {
super.close();
if (this._repeatOption > 0) {
this._repeat = this._repeatOption;
}
if (this._yoyo && this._reversed === true) {
this.reverse();
this._reversed = false;
}
return this;
}
/**
* Resume tweening
* @returns {Tween} this instance
*/
resume() {
if (this.paused && this.playing) {
this.paused = false;
if (this._onResume !== undefined) {
this._onResume.call(this);
}
// re-queue execution context
queueStart.call(this);
// update time and let it roll
this._startTime += KEC.Time() - this._pauseTime;
add(this);
// restart ticker if stopped
if (!Tick) Ticker();
}
return this;
}
/**
* Pause tweening
* @returns {Tween} this instance
*/
pause() {
if (!this.paused && this.playing) {
remove(this);
this.paused = true;
this._pauseTime = KEC.Time();
if (this._onPause !== undefined) {
this._onPause.call(this);
}
}
return this;
}
/**
* Reverses start values with end values
*/
reverse() {
Object.keys(this.valuesEnd).forEach((reverseProp) => {
const tmp = this.valuesRepeat[reverseProp];
this.valuesRepeat[reverseProp] = this.valuesEnd[reverseProp];
this.valuesEnd[reverseProp] = tmp;
this.valuesStart[reverseProp] = this.valuesRepeat[reverseProp];
});
}
/**
* Update the tween on each tick.
* @param {number} time the tick time
* @returns {boolean} this instance
*/
update(time) {
const T = time !== undefined ? time : KEC.Time();
let elapsed;
if (T < this._startTime && this.playing) { return true; }
elapsed = (T - this._startTime) / this._duration;
elapsed = (this._duration === 0 || elapsed > 1) ? 1 : elapsed;
// calculate progress
const progress = this._easing(elapsed);
// render the update
Object.keys(this.valuesEnd).forEach((tweenProp) => {
KEC[tweenProp](this.element,
this.valuesStart[tweenProp],
this.valuesEnd[tweenProp],
progress);
});
// fire the updateCallback
if (this._onUpdate) {
this._onUpdate.call(this);
}
if (elapsed === 1) {
if (this._repeat > 0) {
if (Number.isFinite(this._repeat)) this._repeat -= 1;
// set the right time for delay
this._startTime = T;
if (Number.isFinite(this._repeat) && this._yoyo && !this._reversed) {
this._startTime += this._repeatDelay;
}
if (this._yoyo) { // handle yoyo
this._reversed = !this._reversed;
this.reverse();
}
return true;
}
// fire the complete callback
if (this._onComplete) {
this._onComplete.call(this);
}
// now we're sure no animation is running
this.playing = false;
// stop ticking when finished
this.close();
// start animating chained tweens
if (this._chain !== undefined && this._chain.length) {
this._chain.forEach((tw) => tw.start());
}
return false;
}
return true;
}
}
// Update Tween Interface Update
connect.tween = Tween;
/**
* The static method creates a new `Tween` object for each `HTMLElement`
* from and `Array`, `HTMLCollection` or `NodeList`.
*/
class TweenCollection {
/**
*
* @param {Element[] | HTMLCollection | NodeList} els target elements
* @param {KUTE.tweenProps} vS the start values
* @param {KUTE.tweenProps} vE the end values
* @param {KUTE.tweenOptions} Options tween options
* @returns {TweenCollection} the Tween object collection
*/
constructor(els, vS, vE, Options) {
const TweenConstructor = connect.tween;
/** @type {KUTE.twCollection[]} */
this.tweens = [];
const Ops = Options || {};
/** @type {number?} */
Ops.delay = Ops.delay || defaultOptions$1.delay;
// set all options
const options = [];
Array.from(els).forEach((el, i) => {
options[i] = Ops || {};
options[i].delay = i > 0 ? Ops.delay + (Ops.offset || defaultOptions$1.offset) : Ops.delay;
if (el instanceof Element) {
this.tweens.push(new TweenConstructor(el, vS, vE, options[i]));
} else {
throw Error(`KUTE - ${el} is not instanceof Element`);
}
});
/** @type {number?} */
this.length = this.tweens.length;
return this;
}
/**
* Starts tweening, all targets
* @param {number?} time the tween start time
* @returns {TweenCollection} this instance
*/
start(time) {
const T = time === undefined ? KEC.Time() : time;
this.tweens.map((tween) => tween.start(T));
return this;
}
/**
* Stops tweening, all targets and their chains
* @returns {TweenCollection} this instance
*/
stop() {
this.tweens.map((tween) => tween.stop());
return this;
}
/**
* Pause tweening, all targets
* @returns {TweenCollection} this instance
*/
pause() {
this.tweens.map((tween) => tween.pause());
return this;
}
/**
* Resume tweening, all targets
* @returns {TweenCollection} this instance
*/
resume() {
this.tweens.map((tween) => tween.resume());
return this;
}
/**
* Schedule another tween or collection to start after
* this one is complete.
* @param {number?} args the tween start time
* @returns {TweenCollection} this instance
*/
chain(args) {
const lastTween = this.tweens[this.length - 1];
if (args instanceof TweenCollection) {
lastTween.chain(args.tweens);
} else if (args instanceof connect.tween) {
lastTween.chain(args);
} else {
throw new TypeError('KUTE.js - invalid chain value');
}
return this;
}
/**
* Check if any tween instance is playing
* @param {number?} time the tween start time
* @returns {TweenCollection} this instance
*/
playing() {
return this.tweens.some((tw) => tw.playing);
}
/**
* Remove all tweens in the collection
*/
removeTweens() {
this.tweens = [];
}
/**
* Returns the maximum animation duration
* @returns {number} this instance
*/
getMaxDuration() {
const durations = [];
this.tweens.forEach((tw) => {
durations.push(tw._duration + tw._delay + tw._repeat * tw._repeatDelay);
});
return Math.max(durations);
}
}
const { tween: TweenConstructor$1 } = connect;
/**
* The `KUTE.to()` static method returns a new Tween object
* for a single `HTMLElement` at its current state.
*
* @param {Element} element target element
* @param {KUTE.tweenProps} endObject
* @param {KUTE.tweenOptions} optionsObj tween options
* @returns {KUTE.Tween} the resulting Tween object
*/
function to(element, endObject, optionsObj) {
const options = optionsObj || {};
options.resetStart = endObject;
return new TweenConstructor$1(selector(element), endObject, endObject, options);
}
const { tween: TweenConstructor } = connect;
/**
* The `KUTE.fromTo()` static method returns a new Tween object
* for a single `HTMLElement` at a given state.
*
* @param {Element} element target element
* @param {KUTE.tweenProps} startObject
* @param {KUTE.tweenProps} endObject
* @param {KUTE.tweenOptions} optionsObj tween options
* @returns {KUTE.Tween} the resulting Tween object
*/
function fromTo(element, startObject, endObject, optionsObj) {
const options = optionsObj || {};
return new TweenConstructor(selector(element), startObject, endObject, options);
}
/**
* The `KUTE.allTo()` static method creates a new Tween object
* for multiple `HTMLElement`s, `HTMLCollection` or `NodeListat`
* at their current state.
*
* @param {Element[] | HTMLCollection | NodeList} elements target elements
* @param {KUTE.tweenProps} endObject
* @param {KUTE.tweenProps} optionsObj progress
* @returns {TweenCollection} the Tween object collection
*/
function allTo(elements, endObject, optionsObj) {
const options = optionsObj || {};
options.resetStart = endObject;
return new TweenCollection(selector(elements, true), endObject, endObject, options);
}
/**
* The `KUTE.allFromTo()` static method creates a new Tween object
* for multiple `HTMLElement`s, `HTMLCollection` or `NodeListat`
* at a given state.
*
* @param {Element[] | HTMLCollection | NodeList} elements target elements
* @param {KUTE.tweenProps} startObject
* @param {KUTE.tweenProps} endObject
* @param {KUTE.tweenOptions} optionsObj tween options
* @returns {TweenCollection} the Tween object collection
*/
function allFromTo(elements, startObject, endObject, optionsObj) {
const options = optionsObj || {};
return new TweenCollection(selector(elements, true), startObject, endObject, options);
}
/**
* Animation Class
*
* Registers components by populating KUTE.js objects and makes sure
* no duplicate component / property is allowed.
*/
class Animation {
/**
* @constructor
* @param {KUTE.fullComponent} Component
*/
constructor(Component) {
try {
if (Component.component in supportedProperties) {
throw Error(`KUTE - ${Component.component} already registered`);
} else if (Component.property in defaultValues) {
throw Error(`KUTE - ${Component.property} already registered`);
}
} catch (e) {
throw Error(e);
}
const propertyInfo = this;
const ComponentName = Component.component;
// const Objects = { defaultValues, defaultOptions, Interpolate, linkProperty, Util }
const Functions = {
prepareProperty, prepareStart, onStart, onComplete, crossCheck,
};
const Category = Component.category;
const Property = Component.property;
const Length = (Component.properties && Component.properties.length)
|| (Component.subProperties && Component.subProperties.length);
// single property
// {property,defaultvalue,defaultOptions,Interpolate,functions}
// category colors, boxModel, borderRadius
// {category,properties,defaultvalues,defaultOptions,Interpolate,functions}
// property with multiple sub properties. Eg transform, filter
// {property,subProperties,defaultvalues,defaultOptions,Interpolate,functions}
// property with multiple sub properties. Eg htmlAttributes
// {category,subProperties,defaultvalues,defaultOptions,Interpolate,functions}
// set supported category/property
supportedProperties[ComponentName] = Component.properties
|| Component.subProperties || Component.property;
// set defaultValues
if ('defaultValue' in Component) { // value 0 will invalidate
defaultValues[Property] = Component.defaultValue;
// minimal info
propertyInfo.supports = `${Property} property`;
} else if (Component.defaultValues) {
Object.keys(Component.defaultValues).forEach((dv) => {
defaultValues[dv] = Component.defaultValues[dv];
});
// minimal info
propertyInfo.supports = `${Length || Property} ${Property || Category} properties`;
}
// set additional options
if (Component.defaultOptions) {
// Object.keys(Component.defaultOptions).forEach((op) => {
// defaultOptions[op] = Component.defaultOptions[op];
// });
Object.assign(defaultOptions$1, Component.defaultOptions);
}
// set functions
if (Component.functions) {
Object.keys(Functions).forEach((fn) => {
if (fn in Component.functions) {
if (typeof (Component.functions[fn]) === 'function') {
// if (!Functions[fn][ Category||Property ]) {
// Functions[fn][ Category||Property ] = Component.functions[fn];
// }
if (!Functions[fn][ComponentName]) Functions[fn][ComponentName] = {};
if (!Functions[fn][ComponentName][Category || Property]) {
Functions[fn][ComponentName][Category || Property] = Component.functions[fn];
}
} else {
Object.keys(Component.functions[fn]).forEach((ofn) => {
// !Functions[fn][ofn] && (Functions[fn][ofn] = Component.functions[fn][ofn])
if (!Functions[fn][ComponentName]) Functions[fn][ComponentName] = {};
if (!Functions[fn][ComponentName][ofn]) {
Functions[fn][ComponentName][ofn] = Component.functions[fn][ofn];
}
});
}
}
});
}
// set component interpolation functions
if (Component.Interpolate) {
Object.keys(Component.Interpolate).forEach((fni) => {
const compIntObj = Component.Interpolate[fni];
if (typeof (compIntObj) === 'function' && !interpolate[fni]) {
interpolate[fni] = compIntObj;
} else {
Object.keys(compIntObj).forEach((sfn) => {
if (typeof (compIntObj[sfn]) === 'function' && !interpolate[fni]) {
interpolate[fni] = compIntObj[sfn];
}
});
}
});
linkProperty[ComponentName] = Component.Interpolate;
}
// set component util
if (Component.Util) {
Object.keys(Component.Util).forEach((fnu) => {
if (!Util[fnu]) Util[fnu] = Component.Util[fnu];
});
}
return propertyInfo;
}
}
/**
* trueDimension
*
* Returns the string value of a specific CSS property converted into a nice
* { v = value, u = unit } object.
*
* @param {string} dimValue the property string value
* @param {boolean | number} isAngle sets the utility to investigate angles
* @returns {{v: number, u: string}} the true {value, unit} tuple
*/
const trueDimension = (dimValue, isAngle) => {
const intValue = parseInt(dimValue, 10) || 0;
const mUnits = ['px', '%', 'deg', 'rad', 'em', 'rem', 'vh', 'vw'];
let theUnit;
for (let mIndex = 0; mIndex < mUnits.length; mIndex += 1) {
if (typeof dimValue === 'string' && dimValue.includes(mUnits[mIndex])) {
theUnit = mUnits[mIndex]; break;
}
}
if (theUnit === undefined) {
theUnit = isAngle ? 'deg' : 'px';
}
return { v: intValue, u: theUnit };
};
/**
* Numbers Interpolation Function.
*
* @param {number} a start value
* @param {number} b end value
* @param {number} v progress
* @returns {number} the interpolated number
*/
function numbers(a, b, v) {
const A = +a;
const B = b - a;
// a = +a; b -= a;
return A + B * v;
}
// Component Functions
/**
* Sets the update function for the property.
* @param {string} tweenProp the property name
*/
function boxModelOnStart(tweenProp) {
if (tweenProp in this.valuesEnd && !KEC[tweenProp]) {
KEC[tweenProp] = (elem, a, b, v) => {
/* eslint-disable no-param-reassign -- impossible to satisfy */
/* eslint-disable no-bitwise -- impossible to satisfy */
elem.style[tweenProp] = `${v > 0.99 || v < 0.01
? ((numbers(a, b, v) * 10) >> 0) / 10
: (numbers(a, b, v)) >> 0}px`;
/* eslint-enable no-bitwise */
/* eslint-enable no-param-reassign */
};
}
}
// Component Base Props
const baseBoxProps = ['top', 'left', 'width', 'height'];
const baseBoxOnStart = {};
baseBoxProps.forEach((x) => { baseBoxOnStart[x] = boxModelOnStart; });
// Component Functions
/**
* Returns the current property computed style.
* @param {string} tweenProp the property name
* @returns {string} computed style for property
*/
function getBoxModel(tweenProp) {
return getStyleForProperty(this.element, tweenProp) || defaultValues[tweenProp];
}
/**
* Returns the property tween object.
* @param {string} tweenProp the property name
* @param {string} value the property name
* @returns {number} the property tween object
*/
function prepareBoxModel(tweenProp, value) {
const boxValue = trueDimension(value);
const offsetProp = tweenProp === 'height' ? 'offsetHeight' : 'offsetWidth';
return boxValue.u === '%' ? (boxValue.v * this.element[offsetProp]) / 100 : boxValue.v;
}
// Component Base Props
const essentialBoxProps = ['top', 'left', 'width', 'height'];
const essentialBoxPropsValues = {
top: 0, left: 0, width: 0, height: 0,
};
const essentialBoxOnStart = {};
essentialBoxProps.forEach((x) => { essentialBoxOnStart[x] = boxModelOnStart; });
// All Component Functions
const essentialBoxModelFunctions = {
prepareStart: getBoxModel,
prepareProperty: prepareBoxModel,
onStart: essentialBoxOnStart,
};
// Component Essential
const BoxModelEssential = {
component: 'essentialBoxModel',
category: 'boxModel',
properties: essentialBoxProps,
defaultValues: essentialBoxPropsValues,
Interpolate: { numbers },
functions: essentialBoxModelFunctions,
Util: { trueDimension },
};
/**
* hexToRGB
*
* Converts a #HEX color format into RGB
* and returns a color object {r,g,b}.
*
* @param {string} hex the degree angle
* @returns {KUTE.colorObject | null} the radian angle
*/
const hexToRGB = (hex) => {
// Expand shorthand form (e.g. "03F") to full form (e.g. "0033FF")
const hexShorthand = /^#?([a-f\d])([a-f\d])([a-f\d])$/i;
const HEX = hex.replace(hexShorthand, (_, r, g, b) => r + r + g + g + b + b);
const result = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(HEX);
return result ? {
r: parseInt(result[1], 16),
g: parseInt(result[2], 16),
b: parseInt(result[3], 16),
} : null;
};
/**
* trueColor
*
* Transform any color to rgba()/rgb() and return a nice RGB(a) object.
*
* @param {string} colorString the color input
* @returns {KUTE.colorObject} the {r,g,b,a} color object
*/
const trueColor = (colorString) => {
let result;
if (/rgb|rgba/.test(colorString)) { // first check if it's a rgb string
const vrgb = colorString.replace(/\s|\)/, '').split('(')[1].split(',');
const colorAlpha = vrgb[3] ? vrgb[3] : null;
if (!colorAlpha) {
result = { r: parseInt(vrgb[0], 10), g: parseInt(vrgb[1], 10), b: parseInt(vrgb[2], 10) };
}
result = {
r: parseInt(vrgb[0], 10),
g: parseInt(vrgb[1], 10),
b: parseInt(vrgb[2], 10),
a: parseFloat(colorAlpha),
};
} if (/^#/.test(colorString)) {
const fromHex = hexToRGB(colorString);
result = { r: fromHex.r, g: fromHex.g, b: fromHex.b };
} if (/transparent|none|initial|inherit/.test(colorString)) {
result = {
r: 0, g: 0, b: 0, a: 0,
};
}
// maybe we can check for web safe colors
// only works in a browser
if (!/^#|^rgb/.test(colorString)) {
const siteHead = document.getElementsByTagName('head')[0];
siteHead.style.color = colorString;
let webColor = getComputedStyle(siteHead, null).color;
webColor = /rgb/.test(webColor) ? webColor.replace(/[^\d,]/g, '').split(',') : [0, 0, 0];
siteHead.style.color = '';
result = {
r: parseInt(webColor[0], 10),
g: parseInt(webColor[1], 10),
b: parseInt(webColor[2], 10),
};
}
return result;
};
/**
* Color Interpolation Function.
*
* @param {KUTE.colorObject} a start color
* @param {KUTE.colorObject} b end color
* @param {number} v progress
* @returns {string} the resulting color
*/
function colors(a, b, v) {
const _c = {};
const ep = ')';
const cm = ',';
const rgb = 'rgb(';
const rgba = 'rgba(';
Object.keys(b).forEach((c) => {
if (c !== 'a') {
_c[c] = numbers(a[c], b[c], v) >> 0 || 0; // eslint-disable-line no-bitwise
} else if (a[c] && b[c]) {
_c[c] = (numbers(a[c], b[c], v) * 100 >> 0) / 100; // eslint-disable-line no-bitwise
}
});
return !_c.a
? rgb + _c.r + cm + _c.g + cm + _c.b + ep
: rgba + _c.r + cm + _c.g + cm + _c.b + cm + _c.a + ep;
}
// Component Interpolation
// rgba1, rgba2, progress
// Component Properties
// supported formats
// 'hex', 'rgb', 'rgba' '#fff' 'rgb(0,0,0)' / 'rgba(0,0,0,0)' 'red' (IE9+)
const supportedColors$1 = [
'color', 'backgroundColor', 'outlineColor',
'borderColor',
'borderTopColor', 'borderRightColor',
'borderBottomColor', 'borderLeftColor',
];
// Component Functions
/**
* Sets the property update function.
* @param {string} tweenProp the property name
*/
function onStartColors(tweenProp) {
if (this.valuesEnd[tweenProp] && !KEC[tweenProp]) {
KEC[tweenProp] = (elem, a, b, v) => {
// eslint-disable-next-line no-param-reassign
elem.style[tweenProp] = colors(a, b, v);
};
}
}
const colorsOnStart$1 = {};
supportedColors$1.forEach((x) => { colorsOnStart$1[x] = onStartColors; });
// Component Properties
// supported formats
// 'hex', 'rgb', 'rgba' '#fff' 'rgb(0,0,0)' / 'rgba(0,0,0,0)' 'red' (IE9+)
const supportedColors = [
'color', 'backgroundColor', 'outlineColor',
'borderColor', 'borderTopColor', 'borderRightColor',
'borderBottomColor', 'borderLeftColor',
];
const defaultColors = {};
supportedColors.forEach((tweenProp) => {
defaultColors[tweenProp] = '#000';
});
// Component Functions
const colorsOnStart = {};
supportedColors.forEach((x) => {
colorsOnStart[x] = onStartColors;
});
/**
* Returns the current property computed style.
* @param {string} prop the property name
* @returns {string} property computed style
*/
function getColor(prop/* , value */) {
return getStyleForProperty(this.element, prop) || defaultValues[prop];
}
/**
* Returns the property tween object.
* @param {string} _ the property name
* @param {string} value the property value
* @returns {KUTE.colorObject} the property tween object
*/
function prepareColor(/* prop, */_, value) {
return trueColor(value);
}
// All Component Functions
const colorFunctions = {
prepareStart: getColor,
prepareProperty: prepareColor,
onStart: colorsOnStart,
};
// Component Full
const colorProperties = {
component: 'colorProperties',
category: 'colors',
properties: supportedColors,
defaultValues: defaultColors,
Interpolate: { numbers, colors },
functions: colorFunctions,
Util: { trueColor },
};
// Component Special
const attributes = {};
const onStartAttr = {
/**
* onStartAttr.attr
*
* Sets the sub-property update function.
* @param {string} tweenProp the property name
*/
attr(tweenProp) {
if (!KEC[tweenProp] && this.valuesEnd[tweenProp]) {
KEC[tweenProp] = (elem, vS, vE, v) => {
Object.keys(vE).forEach((oneAttr) => {
KEC.attributes[oneAttr](elem, oneAttr, vS[oneAttr], vE[oneAttr], v);
});
};
}
},
/**
* onStartAttr.attributes
*
* Sets the update function for the property.
* @param {string} tweenProp the property name
*/
attributes(tweenProp) {
if (!KEC[tweenProp] && this.valuesEnd.attr) {
KEC[tweenProp] = attributes;
}
},
};
// Component Name
const ComponentName = 'htmlAttributes';
// Component Properties
const svgColors = ['fill', 'stroke', 'stop-color'];
// Component Util
/**
* Returns non-camelcase property name.
* @param {string} a the camelcase property name
* @returns {string} the non-camelcase property name
*/
function replaceUppercase(a) { return a.replace(/[A-Z]/g, '-$&').toLowerCase(); }
// Component Functions
/**
* Returns the current attribute value.
* @param {string} _ the property name
* @param {string} value the property value
* @returns {{[x:string]: string}} attribute value
*/
function getAttr(/* tweenProp, */_, value) {
const attrStartValues = {};
Object.keys(value).forEach((attr) => {
// get the value for 'fill-opacity' not fillOpacity
// also 'width' not the internal 'width_px'
const attribute = replaceUppercase(attr).replace(/_+[a-z]+/, '');
const currentValue = this.element.getAttribute(attribute);
attrStartValues[attribute] = svgColors.includes(attribute)
? (currentValue || 'rgba(0,0,0,0)')
: (currentValue || (/opacity/i.test(attr) ? 1 : 0));
});
return attrStartValues;
}
/**
* Returns the property tween object.
* @param {string} tweenProp the property name
* @param {string} attrObj the property value
* @returns {number} the property tween object
*/
function prepareAttr(tweenProp, attrObj) { // attr (string),attrObj (object)
const attributesObject = {};
Object.keys(attrObj).forEach((p) => {
const prop = replaceUppercase(p);
const regex = /(%|[a-z]+)$/;
const currentValue = this.element.getAttribute(prop.replace(/_+[a-z]+/, ''));
if (!svgColors.includes(prop)) {
// attributes set with unit suffixes
if (currentValue !== null && regex.test(currentValue)) {
const unit = trueDimension(currentValue).u || trueDimension(attrObj[p]).u;
const suffix = /%/.test(unit) ? '_percent' : `_${unit}`;
// most "unknown" attributes cannot register into onStart, so we manually add them
onStart[ComponentName][prop + suffix] = (tp) => {
if (this.valuesEnd[tweenProp] && this.valuesEnd[tweenProp][tp] && !(tp in attributes)) {
attributes[tp] = (elem, oneAttr, a, b, v) => {
const _p = oneAttr.replace(suffix, '');
/* eslint no-bitwise: ["error", { "allow": [">>"] }] */
elem.setAttribute(_p, ((numbers(a.v, b.v, v) * 1000 >> 0) / 1000) + b.u);
};
}
};
attributesObject[prop + suffix] = trueDimension(attrObj[p]);
} else if (!regex.test(attrObj[p]) || currentValue === null
|| (currentValue !== null && !regex.test(currentValue))) {
// most "unknown" attributes cannot register into onStart, so we manually add them
onStart[ComponentName][prop] = (tp) => {
if (this.valuesEnd[tweenProp] && this.valuesEnd[tweenProp][tp] && !(tp in attributes)) {
attributes[tp] = (elem, oneAttr, a, b, v) => {
elem.setAttribute(oneAttr, (numbers(a, b, v) * 1000 >> 0) / 1000);
};
}
};
attributesObject[prop] = parseFloat(attrObj[p]);
}
} else { // colors
// most "unknown" attributes cannot register into onStart, so we manually add them
onStart[ComponentName][prop] = (tp) => {
if (this.valuesEnd[tweenProp] && this.valuesEnd[tweenProp][tp] && !(tp in attributes)) {
attributes[tp] = (elem, oneAttr, a, b, v) => {
elem.setAttribute(oneAttr, colors(a, b, v));
};
}
};
attributesObject[prop] = trueColor(attrObj[p]) || defaultValues.htmlAttributes[p];
}
});
return attributesObject;
}
// All Component Functions
const attrFunctions = {
prepareStart: getAttr,
prepareProperty: prepareAttr,
onStart: onStartAttr,
};
// Component Full
const htmlAttributes = {
component: ComponentName,
property: 'attr',
// the Animation class will need some values to validate this Object attribute
subProperties: ['fill', 'stroke', 'stop-color', 'fill-opacity', 'stroke-opacity'],
defaultValue: {
fill: 'rgb(0,0,0)',
stroke: 'rgb(0,0,0)',
'stop-color': 'rgb(0,0,0)',
opacity: 1,
'stroke-opacity': 1,
'fill-opacity': 1, // same here
},
Interpolate: { numbers, colors },
functions: attrFunctions,
// export to global for faster execution
Util: { replaceUppercase, trueColor, trueDimension },
};
/* opacityProperty = {
property: 'opacity',
defaultValue: 1,
interpolators: {numbers},
functions = { prepareStart, prepareProperty, onStart }
} */
// Component Functions
/**
* Sets the property update function.
* @param {string} tweenProp the property name
*/
function onStartOpacity(tweenProp/* , value */) {
// opacity could be 0 sometimes, we need to check regardless
if (tweenProp in this.valuesEnd && !KEC[tweenProp]) {
KEC[tweenProp] = (elem, a, b, v) => {
/* eslint-disable */
elem.style[tweenProp] = ((numbers(a, b, v) * 1000) >> 0) / 1000;
/* eslint-enable */
};
}
}
// Component Functions
/**
* Returns the current property computed style.
* @param {string} tweenProp the property name
* @returns {string} computed style for property
*/
function getOpacity(tweenProp/* , value */) {
return getStyleForProperty(this.element, tweenProp);
}
/**
* Returns the property tween object.
* @param {string} _ the property name
* @param {string} value the property value
* @returns {number} the property tween object
*/
function prepareOpacity(/* tweenProp, */_, value) {
return parseFloat(value); // opacity always FLOAT
}
// All Component Functions
const opacityFunctions = {
prepareStart: getOpacity,
prepareProperty: prepareOpacity,
onStart: onStartOpacity,
};
// Full Component
const OpacityProperty = {
component: 'opacityProperty',
property: 'opacity',
defaultValue: 1,
Interpolate: { numbers },
functions: opacityFunctions,
};
// Component Values
const lowerCaseAlpha = String('abcdefghijklmnopqrstuvwxyz').split(''); // lowercase
const upperCaseAlpha = String('abcdefghijklmnopqrstuvwxyz').toUpperCase().split(''); // uppercase
const nonAlpha = String("~!@#$%^&*()_+{}[];'<>,./?=-").split(''); // symbols
const numeric = String('0123456789').split(''); // numeric
const alphaNumeric = lowerCaseAlpha.concat(upperCaseAlpha, numeric); // alpha numeric
const allTypes = alphaNumeric.concat(nonAlpha); // all caracters
const charSet = {
alpha: lowerCaseAlpha, // lowercase
upper: upperCaseAlpha, // uppercase
symbols: nonAlpha, // symbols
numeric,
alphanumeric: alphaNumeric,
all: allTypes,
};
// Component Functions
const onStartWrite = {
/**
* onStartWrite.text
*
* Sets the property update function.
* @param {string} tweenProp the property name
*/
text(tweenProp) {
if (!KEC[tweenProp] && this.valuesEnd[tweenProp]) {
const chars = this._textChars;
let charsets = charSet[defaultOptions$1.textChars];
if (chars in charSet) {
charsets = charSet[chars];
} else if (chars && chars.length) {
charsets = chars;
}
KEC[tweenProp] = (elem, a, b, v) => {
let initialText = '';
let endText = '';
const finalText = b === '' ? ' ' : b;
const firstLetterA = a.substring(0);
const firstLetterB = b.substring(0);
/* eslint-disable */
const pointer = charsets[(Math.random() * charsets.length) >> 0];
if (a === ' ') {
endText = firstLetterB
.substring(Math.min(v * firstLetterB.length, firstLetterB.length) >> 0, 0);
elem.innerHTML = v < 1 ? ((endText + pointer)) : finalText;
} else if (b === ' ') {
initialText = firstLetterA
.substring(0, Math.min((1 - v) * firstLetterA.length, firstLetterA.length) >> 0);
elem.innerHTML = v < 1 ? ((initialText + pointer)) : finalText;
} else {
initialText = firstLetterA
.substring(firstLetterA.length,
Math.min(v * firstLetterA.length, firstLetterA.length) >> 0);
endText = firstLetterB
.substring(0, Math.min(v * firstLetterB.length, firstLetterB.length) >> 0);
elem.innerHTML = v < 1 ? ((endText + pointer + initialText)) : finalText;
}
/* eslint-enable */
};
}
},
/**
* onStartWrite.number
*
* Sets the property update function.
* @param {string} tweenProp the property name
*/
number(tweenProp) {
if (tweenProp in this.valuesEnd && !KEC[tweenProp]) { // numbers can be 0
KEC[tweenProp] = (elem, a, b, v) => {
/* eslint-disable */
elem.innerHTML = numbers(a, b, v) >> 0;
/* eslint-enable */
};
}
},
};
// Component Util
// utility for multi-child targets
// wrapContentsSpan returns an [Element] with the SPAN.tagName and a desired class
function wrapContentsSpan(el, classNAME) {
let textWriteWrapper;
let newElem;
if (typeof (el) === 'string') {
newElem = document.createElement('SPAN');
newElem.innerHTML = el;
newElem.className = classNAME;
return newElem;
}
if (!el.children.length || (el.children.length && el.children[0].className !== classNAME)) {
const elementInnerHTML = el.innerHTML;
textWriteWrapper = document.createElement('SPAN');
textWriteWrapper.className = classNAME;
textWriteWrapper.innerHTML = elementInnerHTML;
/* eslint-disable no-param-reassign -- impossible to satisfy */
el.appendChild(textWriteWrapper);
el.innerHTML = textWriteWrapper.outerHTML;
/* eslint-enable no-param-reassign -- impossible to satisfy */
} else if (el.children.length && el.children[0].className === classNAME) {
[textWriteWrapper] = el.children;
}
return textWriteWrapper;
}
function getTextPartsArray(el, classNAME) {
let elementsArray = [];
const len = el.children.length;
if (len) {
const textParts = [];
let remainingMarkup = el.innerHTML;
let wrapperParts;
for (let i = 0, currentChild, childOuter, unTaggedContent; i < len; i += 1) {
currentChild = el.children[i];
childOuter = currentChild.outerHTML;
wrapperParts = remainingMarkup.split(childOuter);
if (wrapperParts[0] !== '') {
unTaggedContent = wrapContentsSpan(wrapperParts[0], classNAME);
textParts.push(unTaggedContent);
remainingMarkup = remainingMarkup.replace(wrapperParts[0], '');
} else if (wrapperParts[1] !== '') {
unTaggedContent = wrapContentsSpan(wrapperParts[1].split('<')[0], classNAME);
textParts.push(unTaggedContent);
remainingMarkup = remainingMarkup.replace(wrapperParts[0].split('<')[0], '');
}
if (!currentChild.classList.contains(classNAME)) currentChild.classList.add(classNAME);
textParts.push(currentChild);
remainingMarkup = remainingMarkup.replace(childOuter, '');
}
if (remainingMarkup !== '') {
const unTaggedRemaining = wrapContentsSpan(remainingMarkup, classNAME);
textParts.push(unTaggedRemaining);
}
elementsArray = elementsArray.concat(textParts);
} else {
elementsArray = elementsArray.concat([wrapContentsSpan(el, classNAME)]);
}
return elementsArray;
}
function setSegments(target, newText) {
const oldTargetSegs = getTextPartsArray(target, 'text-part');
const newTargetSegs = getTextPartsArray(wrapContentsSpan(newText), 'text-part');
/* eslint-disable no-param-reassign */
target.innerHTML = '';
target.innerHTML += oldTargetSegs.map((s) => { s.className += ' oldText'; return s.outerHTML; }).join('');
target.innerHTML += newTargetSegs.map((s) => { s.className += ' newText'; return s.outerHTML.replace(s.innerHTML, ''); }).join('');
/* eslint-enable no-param-reassign */
return [oldTargetSegs, newTargetSegs];
}
function createTextTweens(target, newText, ops) {
if (target.playing) return false;
const options = ops || {};
options.duration = 1000;
if (ops.duration === 'auto') {
options.duration = 'auto';
} else if (Number.isFinite(ops.duration * 1)) {
options.duration = ops.duration * 1;
}
const TweenContructor = connect.tween;
const segs = setSegments(target, newText);
const oldTargetSegs = segs[0];
const newTargetSegs = segs[1];
const oldTargets = [].slice.call(target.getElementsByClassName('oldText')).reverse();
const newTargets = [].slice.call(target.getElementsByClassName('newText'));
let textTween = [];
let totalDelay = 0;
textTween = textTween.concat(oldTargets.map((el, i) => {
options.duration = options.duration === 'auto'
? oldTargetSegs[i].innerHTML.length * 75
: options.duration;
options.delay = totalDelay;
options.onComplete = null;
totalDelay += options.duration;
return new TweenContructor(el, { text: el.innerHTML }, { text: '' }, options);
}));
textTween = textTween.concat(newTargets.map((el, i) => {
function onComplete() {
/* eslint-disable no-param-reassign */
target.innerHTML = newText;
target.playing = false;
/* eslint-enable no-param-reassign */
}
options.duration = options.duration === 'auto' ? newTargetSegs[i].innerHTML.length * 75 : options.duration;
options.delay = totalDelay;
options.onComplete = i === newTargetSegs.length - 1 ? onComplete : null;
totalDelay += options.duration;
return new TweenContructor(el, { text: '' }, { text: newTargetSegs[i].innerHTML }, options);
}));
textTween.start = function startTweens() {
if (!target.playing) {
textTween.forEach((tw) => tw.start());
// eslint-disable-next-line no-param-reassign
target.playing = true;
}
};
return textTween;
}
// Component Functions
/**
* Returns the current element `innerHTML`.
* @returns {string} computed style for property
*/
function getWrite(/* tweenProp, value */) {
return this.element.innerHTML;
}
/**
* Returns the property tween object.
* @param {string} tweenProp the property name
* @param {string} value the property value
* @returns {number | string} the property tween object
*/
function prepareText(tweenProp, value) {
if (tweenProp === 'number') {
return parseFloat(value);
}
// empty strings crash the update function
return value === '' ? ' ' : value;
}
// All Component Functions
const textWriteFunctions = {
prepareStart: getWrite,
prepareProperty: prepareText,
onStart: onStartWrite,
};
// Full Component
const TextWrite = {
component: 'textWriteProperties',
category: 'textWrite',
properties: ['text', 'number'],
defaultValues: { text: ' ', number: '0' },
defaultOptions: { textChars: 'alpha' },
Interpolate: { numbers },
functions: textWriteFunctions,
// export to global for faster execution
Util: { charSet, createTextTweens },
};
/**
* Perspective Interpolation Function.
*
* @param {number} a start value
* @param {number} b end value
* @param {string} u unit
* @param {number} v progress
* @returns {string} the perspective function in string format
*/
function perspective(a, b, u, v) {
// eslint-disable-next-line no-bitwise
return `perspective(${((a + (b - a) * v) * 1000 >> 0) / 1000}${u})`;
}
/**
* Translate 3D Interpolation Function.
*
* @param {number[]} a start [x,y,z] position
* @param {number[]} b end [x,y,z] position
* @param {string} u unit, usually `px` degrees
* @param {number} v progress
* @returns {string} the interpolated 3D translation string
*/
function translate3d(a, b, u, v) {
const translateArray = [];
for (let ax = 0; ax < 3; ax += 1) {
translateArray[ax] = (a[ax] || b[ax]
// eslint-disable-next-line no-bitwise
? ((a[ax] + (b[ax] - a[ax]) * v) * 1000 >> 0) / 1000 : 0) + u;
}
return `translate3d(${translateArray.join(',')})`;
}
/**
* 3D Rotation Interpolation Function.
*
* @param {number} a start [x,y,z] angles
* @param {number} b end [x,y,z] angles
* @param {string} u unit, usually `deg` degrees
* @param {number} v progress
* @returns {string} the interpolated 3D rotation string
*/
function rotate3d(a, b, u, v) {
let rotateStr = '';
// eslint-disable-next-line no-bitwise
rotateStr += a[0] || b[0] ? `rotateX(${((a[0] + (b[0] - a[0]) * v) * 1000 >> 0) / 1000}${u})` : '';
// eslint-disable-next-line no-bitwise
rotateStr += a[1] || b[1] ? `rotateY(${((a[1] + (b[1] - a[1]) * v) * 1000 >> 0) / 1000}${u})` : '';
// eslint-disable-next-line no-bitwise
rotateStr += a[2] || b[2] ? `rotateZ(${((a[2] + (b[2] - a[2]) * v) * 1000 >> 0) / 1000}${u})` : '';
return rotateStr;
}
/**
* Translate 2D Interpolation Function.
*
* @param {number[]} a start [x,y] position
* @param {number[]} b end [x,y] position
* @param {string} u unit, usually `px` degrees
* @param {number} v progress
* @returns {string} the interpolated 2D translation string
*/
function translate(a, b, u, v) {
const translateArray = [];
// eslint-disable-next-line no-bitwise
translateArray[0] = (a[0] === b[0] ? b[0] : ((a[0] + (b[0] - a[0]) * v) * 1000 >> 0) / 1000) + u;
// eslint-disable-next-line no-bitwise
translateArray[1] = a[1] || b[1] ? ((a[1] === b[1] ? b[1] : ((a[1] + (b[1] - a[1]) * v) * 1000 >> 0) / 1000) + u) : '0';
return `translate(${translateArray.join(',')})`;
}
/**
* 2D Rotation Interpolation Function.
*
* @param {number} a start angle
* @param {number} b end angle
* @param {string} u unit, usually `deg` degrees
* @param {number} v progress
* @returns {string} the interpolated rotation
*/
function rotate(a, b, u, v) {
// eslint-disable-next-line no-bitwise
return `rotate(${((a + (b - a) * v) * 1000 >> 0) / 1000}${u})`;
}
/**
* Scale Interpolation Function.
*
* @param {number} a start scale
* @param {number} b end scale
* @param {number} v progress
* @returns {string} the interpolated scale
*/
function scale(a, b, v) {
// eslint-disable-next-line no-bitwise
return `scale(${((a + (b - a) * v) * 1000 >> 0) / 1000})`;
}
/**
* Skew Interpolation Function.
*
* @param {number} a start {x,y} angles
* @param {number} b end {x,y} angles
* @param {string} u unit, usually `deg` degrees
* @param {number} v progress
* @returns {string} the interpolated string value of skew(s)
*/
function skew(a, b, u, v) {
const skewArray = [];
// eslint-disable-next-line no-bitwise
skewArray[0] = (a[0] === b[0] ? b[0] : ((a[0] + (b[0] - a[0]) * v) * 1000 >> 0) / 1000) + u;
// eslint-disable-next-line no-bitwise
skewArray[1] = a[1] || b[1] ? ((a[1] === b[1] ? b[1] : ((a[1] + (b[1] - a[1]) * v) * 1000 >> 0) / 1000) + u) : '0';
return `skew(${skewArray.join(',')})`;
}
// Component Functions
/**
* Sets the property update function.
* * same to svgTransform, htmlAttributes
* @param {string} tweenProp the property name
*/
function onStartTransform(tweenProp) {
if (!KEC[tweenProp] && this.valuesEnd[tweenProp]) {
KEC[tweenProp] = (elem, a, b, v) => {
// eslint-disable-next-line no-param-reassign
elem.style[tweenProp] = (a.perspective || b.perspective ? perspective(a.perspective, b.perspective, 'px', v) : '') // one side might be 0
+ (a.translate3d ? translate3d(a.translate3d, b.translate3d, 'px', v) : '') // array [x,y,z]
+ (a.rotate3d ? rotate3d(a.rotate3d, b.rotate3d, 'deg', v) : '') // array [x,y,z]
+ (a.skew ? skew(a.skew, b.skew, 'deg', v) : '') // array [x,y]
+ (a.scale || b.scale ? scale(a.scale, b.scale, v) : ''); // one side might be 0
};
}
}
// same to svg transform, attr
// the component developed for modern browsers supporting non-prefixed transform
// Component Functions
/**
* Returns the current property inline style.
* @param {string} tweenProp the property name
* @returns {string} inline style for property
*/
function getTransform(tweenProp/* , value */) {
const currentStyle = getInlineStyle(this.element);
return currentStyle[tweenProp] ? currentStyle[tweenProp] : defaultValues[tweenProp];
}
/**
* Returns the property tween object.
* @param {string} _ the property name
* @param {Object<string, string | number | (string | number)[]>} obj the property value
* @returns {KUTE.transformFObject} the property tween object
*/
function prepareTransform(/* prop, */_, obj) {
const prepAxis = ['X', 'Y', 'Z']; // coordinates
const transformObject = {};
const translateArray = []; const rotateArray = []; const skewArray = [];
const arrayFunctions = ['translate3d', 'translate', 'rotate3d', 'skew'];
Object.keys(obj).forEach((x) => {
const pv = typeof obj[x] === 'object' && obj[x].length
? obj[x].map((v) => parseInt(v, 10))
: parseInt(obj[x], 10);
if (arrayFunctions.includes(x)) {
const propId = x === 'translate' || x === 'rotate' ? `${x}3d` : x;
if (x === 'skew') {
transformObject[propId] = pv.length
? [pv[0] || 0, pv[1] || 0]
: [pv || 0, 0];
} else if (x === 'translate') {
transformObject[propId] = pv.length
? [pv[0] || 0, pv[1] || 0, pv[2] || 0]
: [pv || 0, 0, 0];
} else { // translate3d | rotate3d
transformObject[propId] = [pv[0] || 0, pv[1] || 0, pv[2] || 0];
}
} else if (/[XYZ]/.test(x)) {
const fn = x.replace(/[XYZ]/, '');
const fnId = fn === 'skew' ? fn : `${fn}3d`;
const fnLen = fn === 'skew' ? 2 : 3;
let fnArray = [];
if (fn === 'translate') {
fnArray = translateArray;
} else if (fn === 'rotate') {
fnArray = rotateArray;
} else if (fn === 'skew') {
fnArray = skewArray;
}
for (let fnIndex = 0; fnIndex < fnLen; fnIndex += 1) {
const fnAxis = prepAxis[fnIndex];
fnArray[fnIndex] = (`${fn}${fnAxis}` in obj) ? parseInt(obj[`${fn}${fnAxis}`], 10) : 0;
}
transformObject[fnId] = fnArray;
} else if (x === 'rotate') { // rotate
transformObject.rotate3d = [0, 0, pv];
} else { // scale | perspective
transformObject[x] = x === 'scale' ? parseFloat(obj[x]) : pv;
}
});
return transformObject;
}
/**
* Prepare tween object in advance for `to()` method.
* @param {string} tweenProp the property name
*/
function crossCheckTransform(tweenProp) {
if (this.valuesEnd[tweenProp]) {
if (this.valuesEnd[tweenProp]) {
if (this.valuesEnd[tweenProp].perspective && !this.valuesStart[tweenProp].perspective) {
this.valuesStart[tweenProp].perspective = this.valuesEnd[tweenProp].perspective;
}
}
}
}
// All Component Functions
const transformFunctions = {
prepareStart: getTransform,
prepareProperty: prepareTransform,
onStart: onStartTransform,
crossCheck: crossCheckTransform,
};
const supportedTransformProperties = [
'perspective',
'translate3d', 'translateX', 'translateY', 'translateZ', 'translate',
'rotate3d', 'rotateX', 'rotateY', 'rotateZ', 'rotate',
'skewX', 'skewY', 'skew',
'scale',
];
const defaultTransformValues = {
perspective: 400,
translate3d: [0, 0, 0],
translateX: 0,
translateY: 0,
translateZ: 0,
translate: [0, 0],
rotate3d: [0, 0, 0],
rotateX: 0,
rotateY: 0,
rotateZ: 0,
rotate: 0,
skewX: 0,
skewY: 0,
skew: [0, 0],
scale: 1,
};
// Full Component
const TransformFunctions = {
component: 'transformFunctions',
property: 'transform',
subProperties: supportedTransformProperties,
defaultValues: defaultTransformValues,
functions: transformFunctions,
Interpolate: {
perspective,
translate3d,
rotate3d,
translate,
rotate,
scale,
skew,
},
};
// Component Functions
/**
* Sets the property update function.
* @param {string} tweenProp the property name
*/
function onStartDraw(tweenProp) {
if (tweenProp in this.valuesEnd && !KEC[tweenProp]) {
KEC[tweenProp] = (elem, a, b, v) => {
/* eslint-disable no-bitwise -- impossible to satisfy */
const pathLength = (a.l * 100 >> 0) / 100;
const start = (numbers(a.s, b.s, v) * 100 >> 0) / 100;
const end = (numbers(a.e, b.e, v) * 100 >> 0) / 100;
const offset = 0 - start;
const dashOne = end + offset;
// eslint-disable-next-line no-param-reassign -- impossible to satisfy
elem.style.strokeDashoffset = `${offset}px`;
// eslint-disable-next-line no-param-reassign -- impossible to satisfy
elem.style.strokeDasharray = `${((dashOne < 1 ? 0 : dashOne) * 100 >> 0) / 100}px, ${pathLength}px`;
/* eslint-disable no-bitwise -- impossible to satisfy */
};
}
}
// Component Util
/**
* Convert a `<path>` length percent value to absolute.
* @param {string} v raw value
* @param {number} l length value
* @returns {number} the absolute value
*/
function percent(v, l) {
return (parseFloat(v) / 100) * l;
}
/**
* Returns the `<rect>` length.
* It doesn't compute `rx` and / or `ry` of the element.
* @see http://stackoverflow.com/a/30376660
* @param {SVGRectElement} el target element
* @returns {number} the `<rect>` length
*/
function getRectLength(el) {
const w = el.getAttribute('width');
const h = el.getAttribute('height');
return (w * 2) + (h * 2);
}
/**
* Returns the `<polyline>` / `<polygon>` length.
* @param {SVGPolylineElement | SVGPolygonElement} el target element
* @returns {number} the element length
*/
function getPolyLength(el) {
const points = el.getAttribute('points').split(' ');
let len = 0;
if (points.length > 1) {
const coord = (p) => {
const c = p.split(',');
if (c.length !== 2) { return 0; } // return undefined
if (Number.isNaN(c[0] * 1) || Number.isNaN(c[1] * 1)) { return 0; }
return [parseFloat(c[0]), parseFloat(c[1])];
};
const dist = (c1, c2) => {
if (c1 !== undefined && c2 !== undefined) {
return Math.sqrt((c2[0] - c1[0]) ** 2 + (c2[1] - c1[1]) ** 2);
}
return 0;
};
if (points.length > 2) {
for (let i = 0; i < points.length - 1; i += 1) {
len += dist(coord(points[i]), coord(points[i + 1]));
}
}
len += el.tagName === 'polygon'
? dist(coord(points[0]), coord(points[points.length - 1])) : 0;
}
return len;
}
/**
* Returns the `<line>` length.
* @param {SVGLineElement} el target element
* @returns {number} the element length
*/
function getLineLength(el) {
const x1 = el.getAttribute('x1');
const x2 = el.getAttribute('x2');
const y1 = el.getAttribute('y1');
const y2 = el.getAttribute('y2');
return Math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2);
}
/**
* Returns the `<circle>` length.
* @param {SVGCircleElement} el target element
* @returns {number} the element length
*/
function getCircleLength(el) {
const r = el.getAttribute('r');
return 2 * Math.PI * r;
}
// returns the length of an ellipse
/**
* Returns the `<ellipse>` length.
* @param {SVGEllipseElement} el target element
* @returns {number} the element length
*/
function getEllipseLength(el) {
const rx = el.getAttribute('rx');
const ry = el.getAttribute('ry');
const len = 2 * rx;
const wid = 2 * ry;
return ((Math.sqrt(0.5 * ((len * len) + (wid * wid)))) * (Math.PI * 2)) / 2;
}
/**
* Returns the shape length.
* @param {SVGPathCommander.shapeTypes} el target element
* @returns {number} the element length
*/
function getTotalLength(el) {
if (el.tagName === 'rect') {
return getRectLength(el);
} if (el.tagName === 'circle') {
return getCircleLength(el);
} if (el.tagName === 'ellipse') {
return getEllipseLength(el);
} if (['polygon', 'polyline'].includes(el.tagName)) {
return getPolyLength(el);
} if (el.tagName === 'line') {
return getLineLength(el);
}
// ESLint
return 0;
}
/**
* Returns the property tween object.
* @param {SVGPathCommander.shapeTypes} element the target element
* @param {string | KUTE.drawObject} value the property value
* @returns {KUTE.drawObject} the property tween object
*/
function getDraw(element, value) {
const length = /path|glyph/.test(element.tagName)
? element.getTotalLength()
: getTotalLength(element);
let start;
let end;
let dasharray;
let offset;
if (value instanceof Object && Object.keys(value).every((v) => ['s', 'e', 'l'].includes(v))) {
return value;
} if (typeof value === 'string') {
const v = value.split(/,|\s/);
start = /%/.test(v[0]) ? percent(v[0].trim(), length) : parseFloat(v[0]);
end = /%/.test(v[1]) ? percent(v[1].trim(), length) : parseFloat(v[1]);
} else if (typeof value === 'undefined') {
offset = parseFloat(getStyleForProperty(element, 'stroke-dashoffset'));
dasharray = getStyleForProperty(element, 'stroke-dasharray').split(',');
start = 0 - offset;
end = parseFloat(dasharray[0]) + start || length;
}
return { s: start, e: end, l: length };
}
/**
* Reset CSS properties associated with the `draw` property.
* @param {SVGPathCommander.shapeTypes} element target
*/
function resetDraw(elem) {
/* eslint-disable no-param-reassign -- impossible to satisfy */
elem.style.strokeDashoffset = '';
elem.style.strokeDasharray = '';
/* eslint-disable no-param-reassign -- impossible to satisfy */
}
// Component Functions
/**
* Returns the property tween object.
* @returns {KUTE.drawObject} the property tween object
*/
function getDrawValue(/* prop, value */) {
return getDraw(this.element);
}
/**
* Returns the property tween object.
* @param {string} _ the property name
* @param {string | KUTE.drawObject} value the property value
* @returns {KUTE.drawObject} the property tween object
*/
function prepareDraw(_, value) {
return getDraw(this.element, value);
}
// All Component Functions
const svgDrawFunctions = {
prepareStart: getDrawValue,
prepareProperty: prepareDraw,
onStart: onStartDraw,
};
// Component Full
const SvgDrawProperty = {
component: 'svgDraw',
property: 'draw',
defaultValue: '0% 0%',
Interpolate: { numbers },
functions: svgDrawFunctions,
// Export to global for faster execution
Util: {
getRectLength,
getPolyLength,
getLineLength,
getCircleLength,
getEllipseLength,
getTotalLength,
resetDraw,
getDraw,
percent,
},
};
/**
* Splits an extended A (arc-to) segment into two cubic-bezier segments.
*
* @param {SVGPathCommander.pathArray} path the `pathArray` this segment belongs to
* @param {string[]} allPathCommands all previous path commands
* @param {number} i the segment index
*/
function fixArc(path, allPathCommands, i) {
if (path[i].length > 7) {
path[i].shift();
const segment = path[i];
let ni = i; // ESLint
while (segment.length) {
// if created multiple C:s, their original seg is saved
allPathCommands[i] = 'A';
// @ts-ignore
path.splice(ni += 1, 0, ['C', ...segment.splice(0, 6)]);
}
path.splice(i, 1);
}
}
/**
* Segment params length
*/
const paramsCount = {
a: 7, c: 6, h: 1, l: 2, m: 2, r: 4, q: 4, s: 4, t: 2, v: 1, z: 0,
};
/**
* Breaks the parsing of a pathString once a segment is finalized.
*
* @param {SVGPathCommander.PathParser} path the `PathParser` instance
*/
function finalizeSegment(path) {
let pathCommand = path.pathValue[path.segmentStart];
let LK = pathCommand.toLowerCase();
let { data } = path;
// Process duplicated commands (without comand name)
if (LK === 'm' && data.length > 2) {
// @ts-ignore
path.segments.push([pathCommand, data[0], data[1]]);
data = data.slice(2);
LK = 'l';
pathCommand = pathCommand === 'm' ? 'l' : 'L';
}
// @ts-ignore
while (data.length >= paramsCount[LK]) {
// path.segments.push([pathCommand].concat(data.splice(0, paramsCount[LK])));
// @ts-ignore
path.segments.push([pathCommand, ...data.splice(0, paramsCount[LK])]);
// @ts-ignore
if (!paramsCount[LK]) {
break;
}
}
}
const invalidPathValue = 'Invalid path value';
/**
* Validates an A (arc-to) specific path command value.
* Usually a `large-arc-flag` or `sweep-flag`.
*
* @param {SVGPathCommander.PathParser} path the `PathParser` instance
*/
function scanFlag(path) {
const { index } = path;
const ch = path.pathValue.charCodeAt(index);
if (ch === 0x30/* 0 */) {
path.param = 0;
path.index += 1;
return;
}
if (ch === 0x31/* 1 */) {
path.param = 1;
path.index += 1;
return;
}
path.err = `${invalidPathValue}: invalid Arc flag "${ch}", expecting 0 or 1 at index ${index}`;
}
/**
* Checks if a character is a digit.
*
* @param {number} code the character to check
* @returns {boolean} check result
*/
function isDigit(code) {
return (code >= 48 && code <= 57); // 0..9
}
/**
* Validates every character of the path string,
* every path command, negative numbers or floating point numbers.
*
* @param {SVGPathCommander.PathParser} path the `PathParser` instance
*/
function scanParam(path) {
const { max, pathValue, index: start } = path;
let index = start;
let zeroFirst = false;
let hasCeiling = false;
let hasDecimal = false;
let hasDot = false;
let ch;
if (index >= max) {
// path.err = 'SvgPath: missed param (at pos ' + index + ')';
path.err = `${invalidPathValue} at ${index}: missing param ${pathValue[index]}`;
return;
}
ch = pathValue.charCodeAt(index);
if (ch === 0x2B/* + */ || ch === 0x2D/* - */) {
index += 1;
ch = (index < max) ? pathValue.charCodeAt(index) : 0;
}
// This logic is shamelessly borrowed from Esprima
// https://github.com/ariya/esprimas
if (!isDigit(ch) && ch !== 0x2E/* . */) {
// path.err = 'SvgPath: param should start with 0..9 or `.` (at pos ' + index + ')';
path.err = `${invalidPathValue} at index ${index}: ${pathValue[index]} is not a number`;
return;
}
if (ch !== 0x2E/* . */) {
zeroFirst = (ch === 0x30/* 0 */);
index += 1;
ch = (index < max) ? pathValue.charCodeAt(index) : 0;
if (zeroFirst && index < max) {
// decimal number starts with '0' such as '09' is illegal.
if (ch && isDigit(ch)) {
// path.err = 'SvgPath: numbers started with `0` such as `09`
// are illegal (at pos ' + start + ')';
path.err = `${invalidPathValue} at index ${start}: ${pathValue[start]} illegal number`;
return;
}
}
while (index < max && isDigit(pathValue.charCodeAt(index))) {
index += 1;
hasCeiling = true;
}
ch = (index < max) ? pathValue.charCodeAt(index) : 0;
}
if (ch === 0x2E/* . */) {
hasDot = true;
index += 1;
while (isDigit(pathValue.charCodeAt(index))) {
index += 1;
hasDecimal = true;
}
ch = (index < max) ? pathValue.charCodeAt(index) : 0;
}
if (ch === 0x65/* e */ || ch === 0x45/* E */) {
if (hasDot && !hasCeiling && !hasDecimal) {
path.err = `${invalidPathValue} at index ${index}: ${pathValue[index]} invalid float exponent`;
return;
}
index += 1;
ch = (index < max) ? pathValue.charCodeAt(index) : 0;
if (ch === 0x2B/* + */ || ch === 0x2D/* - */) {
index += 1;
}
if (index < max && isDigit(pathValue.charCodeAt(index))) {
while (index < max && isDigit(pathValue.charCodeAt(index))) {
index += 1;
}
} else {
// path.err = 'SvgPath: invalid float exponent (at pos ' + index + ')';
path.err = `${invalidPathValue} at index ${index}: ${pathValue[index]} invalid float exponent`;
return;
}
}
path.index = index;
path.param = +path.pathValue.slice(start, index);
}
/**
* Checks if the character is a space.
*
* @param {number} ch the character to check
* @returns {boolean} check result
*/
function isSpace(ch) {
const specialSpaces = [
0x1680, 0x180E, 0x2000, 0x2001, 0x2002, 0x2003, 0x2004, 0x2005, 0x2006,
0x2007, 0x2008, 0x2009, 0x200A, 0x202F, 0x205F, 0x3000, 0xFEFF];
return (ch === 0x0A) || (ch === 0x0D) || (ch === 0x2028) || (ch === 0x2029) // Line terminators
// White spaces
|| (ch === 0x20) || (ch === 0x09) || (ch === 0x0B) || (ch === 0x0C) || (ch === 0xA0)
|| (ch >= 0x1680 && specialSpaces.indexOf(ch) >= 0);
}
/**
* Points the parser to the next character in the
* path string every time it encounters any kind of
* space character.
*
* @param {SVGPathCommander.PathParser} path the `PathParser` instance
*/
function skipSpaces(path) {
const { pathValue, max } = path;
while (path.index < max && isSpace(pathValue.charCodeAt(path.index))) {
path.index += 1;
}
}
/**
* Checks if the character is a path command.
*
* @param {any} code the character to check
* @returns {boolean} check result
*/
function isPathCommand(code) {
// eslint-disable-next-line no-bitwise -- Impossible to satisfy
switch (code | 0x20) {
case 0x6D/* m */:
case 0x7A/* z */:
case 0x6C/* l */:
case 0x68/* h */:
case 0x76/* v */:
case 0x63/* c */:
case 0x73/* s */:
case 0x71/* q */:
case 0x74/* t */:
case 0x61/* a */:
// case 0x72/* r */:
return true;
default:
return false;
}
}
/**
* Checks if the character is or belongs to a number.
* [0-9]|+|-|.
*
* @param {number} code the character to check
* @returns {boolean} check result
*/
function isDigitStart(code) {
return (code >= 48 && code <= 57) /* 0..9 */
|| code === 0x2B /* + */
|| code === 0x2D /* - */
|| code === 0x2E; /* . */
}
/**
* Checks if the character is an A (arc-to) path command.
*
* @param {number} code the character to check
* @returns {boolean} check result
*/
function isArcCommand(code) {
// eslint-disable-next-line no-bitwise -- Impossible to satisfy
return (code | 0x20) === 0x61;
}
/**
* Scans every character in the path string to determine
* where a segment starts and where it ends.
*
* @param {SVGPathCommander.PathParser} path the `PathParser` instance
*/
function scanSegment(path) {
const { max, pathValue, index } = path;
const cmdCode = pathValue.charCodeAt(index);
// @ts-ignore
const reqParams = paramsCount[pathValue[index].toLowerCase()];
path.segmentStart = index;
if (!isPathCommand(cmdCode)) {
path.err = `${invalidPathValue}: ${pathValue[index]} not a path command`;
return;
}
path.index += 1;
skipSpaces(path);
path.data = [];
if (!reqParams) {
// Z
finalizeSegment(path);
return;
}
for (;;) {
for (let i = reqParams; i > 0; i -= 1) {
if (isArcCommand(cmdCode) && (i === 3 || i === 4)) scanFlag(path);
else scanParam(path);
if (path.err.length) {
return;
}
path.data.push(path.param);
skipSpaces(path);
// after ',' param is mandatory
if (path.index < max && pathValue.charCodeAt(path.index) === 0x2C/* , */) {
path.index += 1;
skipSpaces(path);
}
}
if (path.index >= path.max) {
break;
}
// Stop on next segment
if (!isDigitStart(pathValue.charCodeAt(path.index))) {
break;
}
}
finalizeSegment(path);
}
/**
* Returns a clone of an existing `pathArray`.
*
* @param {SVGPathCommander.pathArray | SVGPathCommander.pathSegment} path the source `pathArray`
* @returns {any} the cloned `pathArray`
*/
function clonePath(path) {
return path.map((x) => (Array.isArray(x) ? [...x] : x));
}
/**
* The `PathParser` used by the parser.
*
* @param {string} pathString
*/
function PathParser(pathString) {
/** @type {SVGPathCommander.pathArray} */
// @ts-ignore
this.segments = [];
/** @type {string} */
this.pathValue = pathString;
/** @type {number} */
this.max = pathString.length;
/** @type {number} */
this.index = 0;
/** @type {number} */
this.param = 0.0;
/** @type {number} */
this.segmentStart = 0;
/** @type {any} */
this.data = [];
/** @type {string} */
this.err = '';
}
/**
* Iterates an array to check if it's an actual `pathArray`.
*
* @param {string | SVGPathCommander.pathArray} path the `pathArray` to be checked
* @returns {boolean} iteration result
*/
function isPathArray(path) {
return Array.isArray(path) && path.every((seg) => {
const lk = seg[0].toLowerCase();
return paramsCount[lk] === seg.length - 1 && 'achlmqstvz'.includes(lk);
});
}
/**
* Parses a path string value and returns an array
* of segments we like to call `pathArray`.
*
* @param {SVGPathCommander.pathArray | string} pathInput the string to be parsed
* @returns {SVGPathCommander.pathArray} the resulted `pathArray`
*/
function parsePathString(pathInput) {
if (Array.isArray(pathInput) && isPathArray(pathInput)) {
return clonePath(pathInput);
}
// @ts-ignore
const path = new PathParser(pathInput); // TS expects string
skipSpaces(path);
while (path.index < path.max && !path.err.length) {
scanSegment(path);
}
if (path.err.length) {
// @ts-ignore
path.segments = [];
} else if (path.segments.length) {
if (!'mM'.includes(path.segments[0][0])) {
path.err = `${invalidPathValue}: missing M/m`;
// @ts-ignore
path.segments = [];
} else {
path.segments[0][0] = 'M';
}
}
return path.segments;
}
/**
* Iterates an array to check if it's a `pathArray`
* with all absolute values.
*
* @param {SVGPathCommander.pathArray} path the `pathArray` to be checked
* @returns {boolean} iteration result
*/
function isAbsoluteArray(path) {
return isPathArray(path)
&& path.every((x) => x[0] === x[0].toUpperCase());
}
/**
* Parses a path string value or object and returns an array
* of segments, all converted to absolute values.
*
* @param {SVGPathCommander.pathArray | string} pathInput the path string | object
* @returns {SVGPathCommander.absoluteArray} the resulted `pathArray` with absolute values
*/
function pathToAbsolute(pathInput) {
if (Array.isArray(pathInput) && isAbsoluteArray(pathInput)) {
return clonePath(pathInput);
}
const path = parsePathString(pathInput);
let x = 0; let y = 0;
let mx = 0; let my = 0;
// @ts-ignore -- the `absoluteSegment[]` is for sure an `absolutePath`
return path.map((segment) => {
const values = segment.slice(1).map(Number);
const [pathCommand] = segment;
/** @type {SVGPathCommander.absoluteCommand} */
// @ts-ignore
const absCommand = pathCommand.toUpperCase();
if (pathCommand === 'M') {
[x, y] = values;
mx = x;
my = y;
return ['M', x, y];
}
/** @type {SVGPathCommander.absoluteSegment} */
// @ts-ignore
let absoluteSegment = [];
if (pathCommand !== absCommand) {
switch (absCommand) {
case 'A':
absoluteSegment = [
absCommand, values[0], values[1], values[2],
values[3], values[4], values[5] + x, values[6] + y];
break;
case 'V':
absoluteSegment = [absCommand, values[0] + y];
break;
case 'H':
absoluteSegment = [absCommand, values[0] + x];
break;
default: {
// use brakets for `eslint: no-case-declaration`
// https://stackoverflow.com/a/50753272/803358
const absValues = values.map((n, j) => n + (j % 2 ? y : x));
// @ts-ignore for n, l, c, s, q, t
absoluteSegment = [absCommand, ...absValues];
}
}
} else {
// @ts-ignore
absoluteSegment = [absCommand, ...values];
}
const segLength = absoluteSegment.length;
switch (absCommand) {
case 'Z':
x = mx;
y = my;
break;
case 'H':
// @ts-ignore
[, x] = absoluteSegment;
break;
case 'V':
// @ts-ignore
[, y] = absoluteSegment;
break;
default:
// @ts-ignore
x = absoluteSegment[segLength - 2];
// @ts-ignore
y = absoluteSegment[segLength - 1];
if (absCommand === 'M') {
mx = x;
my = y;
}
}
return absoluteSegment;
});
}
/**
* Returns the missing control point from an
* T (shorthand quadratic bezier) segment.
*
* @param {number} x1 curve start x
* @param {number} y1 curve start y
* @param {number} qx control point x
* @param {number} qy control point y
* @param {string} prevCommand the previous path command
* @returns {{qx: number, qy: number}}} the missing control point
*/
function shorthandToQuad(x1, y1, qx, qy, prevCommand) {
return 'QT'.includes(prevCommand)
? { qx: x1 * 2 - qx, qy: y1 * 2 - qy }
: { qx: x1, qy: y1 };
}
/**
* Returns the missing control point from an
* S (shorthand cubic bezier) segment.
*
* @param {number} x1 curve start x
* @param {number} y1 curve start y
* @param {number} x2 curve end x
* @param {number} y2 curve end y
* @param {string} prevCommand the previous path command
* @returns {{x1: number, y1: number}}} the missing control point
*/
function shorthandToCubic(x1, y1, x2, y2, prevCommand) {
return 'CS'.includes(prevCommand)
? { x1: x1 * 2 - x2, y1: y1 * 2 - y2 }
: { x1, y1 };
}
/**
* Normalizes a single segment of a `pathArray` object.
*
* @param {SVGPathCommander.pathSegment} segment the segment object
* @param {any} params the coordinates of the previous segment
* @param {string} prevCommand the path command of the previous segment
* @returns {SVGPathCommander.normalSegment} the normalized segment
*/
function normalizeSegment(segment, params, prevCommand) {
const [pathCommand] = segment;
const {
x1: px1, y1: py1, x2: px2, y2: py2,
} = params;
const values = segment.slice(1).map(Number);
let result = segment;
if (!'TQ'.includes(pathCommand)) {
// optional but good to be cautious
params.qx = null;
params.qy = null;
}
if (pathCommand === 'H') {
result = ['L', segment[1], py1];
} else if (pathCommand === 'V') {
result = ['L', px1, segment[1]];
} else if (pathCommand === 'S') {
const { x1, y1 } = shorthandToCubic(px1, py1, px2, py2, prevCommand);
params.x1 = x1;
params.y1 = y1;
// @ts-ignore
result = ['C', x1, y1, ...values];
} else if (pathCommand === 'T') {
const { qx, qy } = shorthandToQuad(px1, py1, params.qx, params.qy, prevCommand);
params.qx = qx;
params.qy = qy;
// @ts-ignore
result = ['Q', qx, qy, ...values];
} else if (pathCommand === 'Q') {
const [nqx, nqy] = values;
params.qx = nqx;
params.qy = nqy;
}
// @ts-ignore -- we-re switching `pathSegment` type
return result;
}
/**
* Iterates an array to check if it's a `pathArray`
* with all segments are in non-shorthand notation
* with absolute values.
*
* @param {SVGPathCommander.pathArray} path the `pathArray` to be checked
* @returns {boolean} iteration result
*/
function isNormalizedArray(path) {
return isAbsoluteArray(path) && path.every((seg) => 'ACLMQZ'.includes(seg[0]));
}
/**
* @type {SVGPathCommander.parserParams}
*/
const paramsParser = {
x1: 0, y1: 0, x2: 0, y2: 0, x: 0, y: 0, qx: null, qy: null,
};
/**
* Normalizes a `path` object for further processing:
* * convert segments to absolute values
* * convert shorthand path commands to their non-shorthand notation
*
* @param {SVGPathCommander.pathArray} pathInput the string to be parsed or 'pathArray'
* @returns {SVGPathCommander.normalArray} the normalized `pathArray`
*/
function normalizePath(pathInput) {
if (isNormalizedArray(pathInput)) {
return clonePath(pathInput);
}
const path = pathToAbsolute(pathInput);
const params = { ...paramsParser };
const allPathCommands = [];
const ii = path.length;
let pathCommand = '';
let prevCommand = '';
for (let i = 0; i < ii; i += 1) {
[pathCommand] = path[i];
// Save current path command
allPathCommands[i] = pathCommand;
// Get previous path command
if (i) prevCommand = allPathCommands[i - 1];
// Previous path command is used to normalizeSegment
// @ts-ignore -- expected on normalization
path[i] = normalizeSegment(path[i], params, prevCommand);
const segment = path[i];
const seglen = segment.length;
params.x1 = +segment[seglen - 2];
params.y1 = +segment[seglen - 1];
params.x2 = +(segment[seglen - 4]) || params.x1;
params.y2 = +(segment[seglen - 3]) || params.y1;
}
// @ts-ignore -- a `normalArray` is absolutely an `absoluteArray`
return path;
}
/**
* Checks a `pathArray` for an unnecessary `Z` segment
* and returns a new `pathArray` without it.
*
* The `pathInput` must be a single path, without
* sub-paths. For multi-path `<path>` elements,
* use `splitPath` first and apply this utility on each
* sub-path separately.
*
* @param {SVGPathCommander.pathArray | string} pathInput the `pathArray` source
* @return {SVGPathCommander.pathArray} a fixed `pathArray`
*/
function fixPath(pathInput) {
const pathArray = parsePathString(pathInput);
const normalArray = normalizePath(pathArray);
const { length } = pathArray;
const isClosed = normalArray.slice(-1)[0][0] === 'Z';
const segBeforeZ = isClosed ? length - 2 : length - 1;
const [mx, my] = normalArray[0].slice(1);
const [x, y] = normalArray[segBeforeZ].slice(-2);
if (isClosed && mx === x && my === y) {
// @ts-ignore -- `pathSegment[]` is a `pathArray`
return pathArray.slice(0, -1);
}
return pathArray;
}
/**
* Iterates an array to check if it's a `pathArray`
* with all C (cubic bezier) segments.
*
* @param {SVGPathCommander.pathArray} path the `Array` to be checked
* @returns {boolean} iteration result
*/
function isCurveArray(path) {
return isPathArray(path) && path.every((seg) => 'MC'.includes(seg[0]));
}
/**
* Returns an {x,y} vector rotated by a given
* angle in radian.
*
* @param {number} x the initial vector x
* @param {number} y the initial vector y
* @param {number} rad the radian vector angle
* @returns {{x: number, y: number}} the rotated vector
*/
function rotateVector(x, y, rad) {
const X = x * Math.cos(rad) - y * Math.sin(rad);
const Y = x * Math.sin(rad) + y * Math.cos(rad);
return { x: X, y: Y };
}
/**
* Converts A (arc-to) segments to C (cubic-bezier-to).
*
* For more information of where this math came from visit:
* http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
*
* @param {number} X1 the starting x position
* @param {number} Y1 the starting y position
* @param {number} RX x-radius of the arc
* @param {number} RY y-radius of the arc
* @param {number} angle x-axis-rotation of the arc
* @param {number} LAF large-arc-flag of the arc
* @param {number} SF sweep-flag of the arc
* @param {number} X2 the ending x position
* @param {number} Y2 the ending y position
* @param {number[]=} recursive the parameters needed to split arc into 2 segments
* @return {number[]} the resulting cubic-bezier segment(s)
*/
function arcToCubic(X1, Y1, RX, RY, angle, LAF, SF, X2, Y2, recursive) {
let x1 = X1; let y1 = Y1; let rx = RX; let ry = RY; let x2 = X2; let y2 = Y2;
// for more information of where this Math came from visit:
// http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
const d120 = (Math.PI * 120) / 180;
const rad = (Math.PI / 180) * (+angle || 0);
/** @type {number[]} */
let res = [];
let xy;
let f1;
let f2;
let cx;
let cy;
if (!recursive) {
xy = rotateVector(x1, y1, -rad);
x1 = xy.x;
y1 = xy.y;
xy = rotateVector(x2, y2, -rad);
x2 = xy.x;
y2 = xy.y;
const x = (x1 - x2) / 2;
const y = (y1 - y2) / 2;
let h = (x * x) / (rx * rx) + (y * y) / (ry * ry);
if (h > 1) {
h = Math.sqrt(h);
rx *= h;
ry *= h;
}
const rx2 = rx * rx;
const ry2 = ry * ry;
const k = (LAF === SF ? -1 : 1)
* Math.sqrt(Math.abs((rx2 * ry2 - rx2 * y * y - ry2 * x * x)
/ (rx2 * y * y + ry2 * x * x)));
cx = ((k * rx * y) / ry) + ((x1 + x2) / 2);
cy = ((k * -ry * x) / rx) + ((y1 + y2) / 2);
// eslint-disable-next-line no-bitwise -- Impossible to satisfy no-bitwise
f1 = (Math.asin((((y1 - cy) / ry))) * (10 ** 9) >> 0) / (10 ** 9);
// eslint-disable-next-line no-bitwise -- Impossible to satisfy no-bitwise
f2 = (Math.asin((((y2 - cy) / ry))) * (10 ** 9) >> 0) / (10 ** 9);
f1 = x1 < cx ? Math.PI - f1 : f1;
f2 = x2 < cx ? Math.PI - f2 : f2;
if (f1 < 0) (f1 = Math.PI * 2 + f1);
if (f2 < 0) (f2 = Math.PI * 2 + f2);
if (SF && f1 > f2) {
f1 -= Math.PI * 2;
}
if (!SF && f2 > f1) {
f2 -= Math.PI * 2;
}
} else {
[f1, f2, cx, cy] = recursive;
}
let df = f2 - f1;
if (Math.abs(df) > d120) {
const f2old = f2;
const x2old = x2;
const y2old = y2;
f2 = f1 + d120 * (SF && f2 > f1 ? 1 : -1);
x2 = cx + rx * Math.cos(f2);
y2 = cy + ry * Math.sin(f2);
res = arcToCubic(x2, y2, rx, ry, angle, 0, SF, x2old, y2old, [f2, f2old, cx, cy]);
}
df = f2 - f1;
const c1 = Math.cos(f1);
const s1 = Math.sin(f1);
const c2 = Math.cos(f2);
const s2 = Math.sin(f2);
const t = Math.tan(df / 4);
const hx = (4 / 3) * rx * t;
const hy = (4 / 3) * ry * t;
const m1 = [x1, y1];
const m2 = [x1 + hx * s1, y1 - hy * c1];
const m3 = [x2 + hx * s2, y2 - hy * c2];
const m4 = [x2, y2];
m2[0] = 2 * m1[0] - m2[0];
m2[1] = 2 * m1[1] - m2[1];
if (recursive) {
return [...m2, ...m3, ...m4, ...res];
}
res = [...m2, ...m3, ...m4, ...res];
const newres = [];
for (let i = 0, ii = res.length; i < ii; i += 1) {
newres[i] = i % 2
? rotateVector(res[i - 1], res[i], rad).y
: rotateVector(res[i], res[i + 1], rad).x;
}
return newres;
}
/**
* Converts a Q (quadratic-bezier) segment to C (cubic-bezier).
*
* @param {number} x1 curve start x
* @param {number} y1 curve start y
* @param {number} qx control point x
* @param {number} qy control point y
* @param {number} x2 curve end x
* @param {number} y2 curve end y
* @returns {number[]} the cubic-bezier segment
*/
function quadToCubic(x1, y1, qx, qy, x2, y2) {
const r13 = 1 / 3;
const r23 = 2 / 3;
return [
r13 * x1 + r23 * qx, // cpx1
r13 * y1 + r23 * qy, // cpy1
r13 * x2 + r23 * qx, // cpx2
r13 * y2 + r23 * qy, // cpy2
x2, y2, // x,y
];
}
/**
* Returns the {x,y} coordinates of a point at a
* given length of a cubic-bezier segment.
*
* @param {number} p1x the starting point X
* @param {number} p1y the starting point Y
* @param {number} c1x the first control point X
* @param {number} c1y the first control point Y
* @param {number} c2x the second control point X
* @param {number} c2y the second control point Y
* @param {number} p2x the ending point X
* @param {number} p2y the ending point Y
* @param {number} t a [0-1] ratio
* @returns {{x: number, y: number}} the requested {x,y} coordinates
*/
function getPointAtSegLength(p1x, p1y, c1x, c1y, c2x, c2y, p2x, p2y, t) {
const t1 = 1 - t;
return {
x: (t1 ** 3) * p1x
+ t1 * t1 * 3 * t * c1x
+ t1 * 3 * t * t * c2x
+ (t ** 3) * p2x,
y: (t1 ** 3) * p1y
+ t1 * t1 * 3 * t * c1y
+ t1 * 3 * t * t * c2y
+ (t ** 3) * p2y,
};
}
/**
* Returns the coordinates of a specified distance
* ratio between two points.
*
* @param {[number, number]} a the first point coordinates
* @param {[number, number]} b the second point coordinates
* @param {number} t the ratio
* @returns {[number, number]} the midpoint coordinates
*/
function midPoint(a, b, t) {
const [ax, ay] = a; const [bx, by] = b;
return [ax + (bx - ax) * t, ay + (by - ay) * t];
}
/**
* Converts an L (line-to) segment to C (cubic-bezier).
*
* @param {number} x1 line start x
* @param {number} y1 line start y
* @param {number} x2 line end x
* @param {number} y2 line end y
* @returns {number[]} the cubic-bezier segment
*/
function lineToCubic(x1, y1, x2, y2) {
const t = 0.5;
/** @type {[number, number]} */
const p0 = [x1, y1];
/** @type {[number, number]} */
const p1 = [x2, y2];
const p2 = midPoint(p0, p1, t);
const p3 = midPoint(p1, p2, t);
const p4 = midPoint(p2, p3, t);
const p5 = midPoint(p3, p4, t);
const p6 = midPoint(p4, p5, t);
// const cp1 = getPointAtSegLength.apply(0, p0.concat(p2, p4, p6, t));
const seg1 = [...p0, ...p2, ...p4, ...p6, t];
// @ts-ignore
const cp1 = getPointAtSegLength(...seg1);
// const cp2 = getPointAtSegLength.apply(0, p6.concat(p5, p3, p1, 0));
const seg2 = [...p6, ...p5, ...p3, ...p1, 0];
// @ts-ignore
const cp2 = getPointAtSegLength(...seg2);
return [cp1.x, cp1.y, cp2.x, cp2.y, x2, y2];
}
/**
* Converts any segment to C (cubic-bezier).
*
* @param {SVGPathCommander.pathSegment} segment the source segment
* @param {SVGPathCommander.parserParams} params the source segment parameters
* @returns {SVGPathCommander.cubicSegment | SVGPathCommander.MSegment} the cubic-bezier segment
*/
function segmentToCubic(segment, params) {
const [pathCommand] = segment;
const values = segment.slice(1).map((n) => +n);
const [x, y] = values;
let args;
const {
x1: px1, y1: py1, x: px, y: py,
} = params;
if (!'TQ'.includes(pathCommand)) {
params.qx = null;
params.qy = null;
}
switch (pathCommand) {
case 'M':
params.x = x;
params.y = y;
return segment;
case 'A':
args = [px1, py1, ...values];
// @ts-ignore -- relax, the utility will return 6 numbers
return ['C', ...arcToCubic(...args)];
case 'Q':
params.qx = x;
params.qy = y;
args = [px1, py1, ...values];
// @ts-ignore -- also returning 6 numbers
return ['C', ...quadToCubic(...args)];
case 'L':
// @ts-ignore -- also returning 6 numbers
return ['C', ...lineToCubic(px1, py1, x, y)];
case 'Z':
// @ts-ignore -- also returning 6 numbers
return ['C', ...lineToCubic(px1, py1, px, py)];
}
// @ts-ignore -- we're switching `pathSegment` type
return segment;
}
/**
* Parses a path string value or 'pathArray' and returns a new one
* in which all segments are converted to cubic-bezier.
*
* In addition, un-necessary `Z` segment is removed if previous segment
* extends to the `M` segment.
*
* @param {SVGPathCommander.pathArray} pathInput the string to be parsed or 'pathArray'
* @returns {SVGPathCommander.curveArray} the resulted `pathArray` converted to cubic-bezier
*/
function pathToCurve(pathInput) {
if (isCurveArray(pathInput)) {
return clonePath(pathInput);
}
const path = fixPath(normalizePath(pathInput));
const params = { ...paramsParser };
const allPathCommands = [];
let pathCommand = ''; // ts-lint
let ii = path.length;
for (let i = 0; i < ii; i += 1) {
[pathCommand] = path[i];
allPathCommands[i] = pathCommand;
path[i] = segmentToCubic(path[i], params);
fixArc(path, allPathCommands, i);
ii = path.length;
const segment = path[i];
const seglen = segment.length;
params.x1 = +segment[seglen - 2];
params.y1 = +segment[seglen - 1];
params.x2 = +(segment[seglen - 4]) || params.x1;
params.y2 = +(segment[seglen - 3]) || params.y1;
}
// @ts-ignore
return path;
}
/**
* SVGPathCommander default options
* @type {SVGPathCommander.options}
*/
const defaultOptions = {
origin: [0, 0, 0],
round: 4,
};
/**
* Rounds the values of a `pathArray` instance to
* a specified amount of decimals and returns it.
*
* @param {SVGPathCommander.pathArray} path the source `pathArray`
* @param {number | boolean} roundOption the amount of decimals to round numbers to
* @returns {SVGPathCommander.pathArray} the resulted `pathArray` with rounded values
*/
function roundPath(path, roundOption) {
let { round } = defaultOptions;
if (roundOption === false || round === false) return clonePath(path);
round = roundOption >= 1 ? roundOption : round;
// to round values to the power
// the `round` value must be integer
// @ts-ignore
const pow = round >= 1 ? (10 ** round) : 1;
// @ts-ignore -- `pathSegment[]` is `pathArray`
return path.map((pi) => {
const values = pi.slice(1).map(Number)
.map((n) => (n % 1 === 0 ? n : Math.round(n * pow) / pow));
return [pi[0], ...values];
});
}
/**
* Returns a valid `d` attribute string value created
* by rounding values and concatenating the `pathArray` segments.
*
* @param {SVGPathCommander.pathArray} path the `pathArray` object
* @param {any} round amount of decimals to round values to
* @returns {string} the concatenated path string
*/
function pathToString(path, round) {
return roundPath(path, round)
.map((x) => x[0] + x.slice(1).join(' ')).join('');
}
/**
* Split a path into an `Array` of sub-path strings.
*
* In the process, values are converted to absolute
* for visual consistency.
*
* @param {SVGPathCommander.pathArray | string} pathInput the source `pathArray`
* @return {string[]} an array with all sub-path strings
*/
function splitPath(pathInput) {
return pathToString(pathToAbsolute(pathInput), 0)
.replace(/(m|M)/g, '|$1')
.split('|')
.map((s) => s.trim())
.filter((s) => s);
}
/**
* @param {number} p1
* @param {number} p2
* @param {number} p3
* @param {number} p4
* @param {number} t a [0-1] ratio
* @returns {number}
*/
function base3(p1, p2, p3, p4, t) {
const t1 = -3 * p1 + 9 * p2 - 9 * p3 + 3 * p4;
const t2 = t * t1 + 6 * p1 - 12 * p2 + 6 * p3;
return t * t2 - 3 * p1 + 3 * p2;
}
/**
* Returns the C (cubic-bezier) segment length.
*
* @param {number} x1 the starting point X
* @param {number} y1 the starting point Y
* @param {number} x2 the first control point X
* @param {number} y2 the first control point Y
* @param {number} x3 the second control point X
* @param {number} y3 the second control point Y
* @param {number} x4 the ending point X
* @param {number} y4 the ending point Y
* @param {number} z a [0-1] ratio
* @returns {number} the cubic-bezier segment length
*/
function getSegCubicLength(x1, y1, x2, y2, x3, y3, x4, y4, z) {
let Z = z;
if (z === null || Number.isNaN(+z)) Z = 1;
// Z = Z > 1 ? 1 : Z < 0 ? 0 : Z;
if (Z > 1) Z = 1;
if (Z < 0) Z = 0;
const z2 = Z / 2; let ct = 0; let xbase = 0; let ybase = 0; let sum = 0;
const Tvalues = [-0.1252, 0.1252, -0.3678, 0.3678,
-0.5873, 0.5873, -0.7699, 0.7699,
-0.9041, 0.9041, -0.9816, 0.9816];
const Cvalues = [0.2491, 0.2491, 0.2335, 0.2335,
0.2032, 0.2032, 0.1601, 0.1601,
0.1069, 0.1069, 0.0472, 0.0472];
Tvalues.forEach((T, i) => {
ct = z2 * T + z2;
xbase = base3(x1, x2, x3, x4, ct);
ybase = base3(y1, y2, y3, y4, ct);
sum += Cvalues[i] * Math.sqrt(xbase * xbase + ybase * ybase);
});
return z2 * sum;
}
/**
* Returns the shape total length,
* or the equivalent to `shape.getTotalLength()`
* pathToCurve version
*
* @param {SVGPathCommander.pathArray} path the target `pathArray`
* @returns {number} the shape total length
*/
function getPathLength(path) {
let totalLength = 0;
pathToCurve(path).forEach((s, i, curveArray) => {
const args = s[0] !== 'M' ? [...curveArray[i - 1].slice(-2), ...s.slice(1)] : [];
totalLength += s[0] === 'M' ? 0
// @ts-ignore
: getSegCubicLength(...args);
});
return totalLength;
}
/**
* Returns [x,y] coordinates of a point at a given length of a shape.
*
* @param {string | SVGPathCommander.pathArray} path the `pathArray` to look into
* @param {number} length the length of the shape to look at
* @returns {number[]} the requested [x,y] coordinates
*/
function getPointAtLength(path, length) {
let totalLength = 0;
let segLen;
let data;
let result;
// @ts-ignore
return pathToCurve(path).map((seg, i, curveArray) => {
data = i ? [...curveArray[i - 1].slice(-2), ...seg.slice(1)] : seg.slice(1);
// @ts-ignore
segLen = i ? getSegCubicLength(...data) : 0;
totalLength += segLen;
if (i === 0) {
result = { x: data[0], y: data[1] };
} else if (totalLength > length && length > totalLength - segLen) {
const args = [...data, 1 - ((totalLength - length) / segLen)];
// @ts-ignore
result = getPointAtSegLength(...args);
} else {
result = null;
}
return result;
}).filter((x) => x).slice(-1)[0]; // isolate last segment
}
/**
* Returns the area of a single segment shape.
*
* http://objectmix.com/graphics/133553-area-closed-bezier-curve.html
*
* @param {number} x0 the starting point X
* @param {number} y0 the starting point Y
* @param {number} x1 the first control point X
* @param {number} y1 the first control point Y
* @param {number} x2 the second control point X
* @param {number} y2 the second control point Y
* @param {number} x3 the ending point X
* @param {number} y3 the ending point Y
* @returns {number} the area of the cubic-bezier segment
*/
function getCubicSegArea(x0, y0, x1, y1, x2, y2, x3, y3) {
return (3 * ((y3 - y0) * (x1 + x2) - (x3 - x0) * (y1 + y2)
+ (y1 * (x0 - x2)) - (x1 * (y0 - y2))
+ (y3 * (x2 + x0 / 3)) - (x3 * (y2 + y0 / 3)))) / 20;
}
/**
* Returns the area of a shape.
* @author Jürg Lehni & Jonathan Puckey
*
* => https://github.com/paperjs/paper.js/blob/develop/src/path/Path.js
*
* @param {SVGPathCommander.pathArray} path the shape `pathArray`
* @returns {number} the length of the cubic-bezier segment
*/
function getPathArea(path) {
let x = 0; let y = 0;
let len = 0;
return pathToCurve(path).map((seg) => {
switch (seg[0]) {
case 'M':
[, x, y] = seg;
return 0;
default:
// @ts-ignore -- the utility will have proper amount of params
len = getCubicSegArea(...[x, y, ...seg.slice(1)]);
[x, y] = seg.slice(-2).map(Number);
return len;
}
}).reduce((a, b) => a + b, 0);
}
/**
* Check if a path is drawn clockwise and returns true if so,
* false otherwise.
*
* @param {SVGPathCommander.pathArray} path the path string or `pathArray`
* @returns {boolean} true when clockwise or false if not
*/
function getDrawDirection(path) {
return getPathArea(pathToCurve(path)) >= 0;
}
/**
* A global namespace for epsilon.
*
* @type {number}
*/
const epsilon = 1e-9;
/**
* Returns the square root of the distance
* between two given points.
*
* @param {[number, number]} a the first point coordinates
* @param {[number, number]} b the second point coordinates
* @returns {number} the distance value
*/
function distanceSquareRoot(a, b) {
return Math.sqrt(
(a[0] - b[0]) * (a[0] - b[0])
+ (a[1] - b[1]) * (a[1] - b[1]),
);
}
/**
* Coordinates Interpolation Function.
*
* @param {number[][]} a start coordinates
* @param {number[][]} b end coordinates
* @param {string} l amount of coordinates
* @param {number} v progress
* @returns {number[][]} the interpolated coordinates
*/
function coords(a, b, l, v) {
const points = [];
for (let i = 0; i < l; i += 1) { // for each point
points[i] = [];
for (let j = 0; j < 2; j += 1) { // each point coordinate
// eslint-disable-next-line no-bitwise
points[i].push(((a[i][j] + (b[i][j] - a[i][j]) * v) * 1000 >> 0) / 1000);
}
}
return points;
}
/* SVGMorph = {
property: 'path',
defaultValue: [],
interpolators: {numbers,coords} },
functions = { prepareStart, prepareProperty, onStart, crossCheck }
} */
// Component functions
/**
* Sets the property update function.
* @param {string} tweenProp the property name
*/
function onStartSVGMorph(tweenProp) {
if (!KEC[tweenProp] && this.valuesEnd[tweenProp]) {
KEC[tweenProp] = (elem, a, b, v) => {
const path1 = a.polygon; const path2 = b.polygon;
const len = path2.length;
elem.setAttribute('d', (v === 1 ? b.original : `M${coords(path1, path2, len, v).join('L')}Z`));
};
}
}
// Component Util
// original script flubber
// https://github.com/veltman/flubber
/**
* Returns polygon length.
* @param {KUTE.polygonMorph} polygon target polygon
* @returns {number} length
*/
function polygonLength(polygon) {
return polygon.reduce((length, point, i) => (i
? length + distanceSquareRoot(polygon[i - 1], point)
: 0), 0);
}
/**
* Returns an existing polygin and its length or false if not polygon.
* @param {SVGPathCommander.pathArray} pathArray target polygon
* @returns {KUTE.exactRing} length
*/
function exactRing(pathArray) {
const polygon = [];
const pathlen = pathArray.length;
let segment = [];
let pathCommand = '';
if (!pathArray.length || pathArray[0][0] !== 'M') {
return false;
}
for (let i = 0; i < pathlen; i += 1) {
segment = pathArray[i];
[pathCommand] = segment;
if ((pathCommand === 'M' && i) || pathCommand === 'Z') {
break; // !!
} else if ('ML'.includes(pathCommand)) {
polygon.push([segment[1], segment[2]]);
} else {
return false;
}
}
return pathlen ? { polygon } : false;
}
/**
* Returns polygon length.
* @param {SVGPathCommander.pathArray} parsed target polygon
* @param {number} maxLength the maximum segment length
* @returns {KUTE.exactRing} length
*/
function approximatePolygon(parsed, maxLength) {
const ringPath = splitPath(pathToString(parsed))[0];
const curvePath = pathToCurve(ringPath);
const pathLength = getPathLength(curvePath);
const polygon = [];
let numPoints = 3;
let point;
if (maxLength && !Number.isNaN(maxLength) && +maxLength > 0) {
numPoints = Math.max(numPoints, Math.ceil(pathLength / maxLength));
}
for (let i = 0; i < numPoints; i += 1) {
point = getPointAtLength(curvePath, (pathLength * i) / numPoints);
polygon.push([point.x, point.y]);
}
// Make all rings clockwise
if (!getDrawDirection(curvePath)) {
polygon.reverse();
}
return {
polygon,
skipBisect: true,
};
}
/**
* Parses a path string and returns a polygon array.
* @param {string} str path string
* @param {number} maxLength maximum amount of points
* @returns {KUTE.exactRing} the polygon array we need
*/
function pathStringToPolygon(str, maxLength) {
const parsed = normalizePath(str);
return exactRing(parsed) || approximatePolygon(parsed, maxLength);
}
/**
* Rotates a polygon to better match its pair.
* @param {KUTE.polygonMorph} polygon the target polygon
* @param {KUTE.polygonMorph} vs the reference polygon
*/
function rotatePolygon(polygon, vs) {
const len = polygon.length;
let min = Infinity;
let bestOffset;
let sumOfSquares = 0;
let spliced;
let d;
let p;
for (let offset = 0; offset < len; offset += 1) {
sumOfSquares = 0;
for (let i = 0; i < vs.length; i += 1) {
p = vs[i];
d = distanceSquareRoot(polygon[(offset + i) % len], p);
sumOfSquares += d * d;
}
if (sumOfSquares < min) {
min = sumOfSquares;
bestOffset = offset;
}
}
if (bestOffset) {
spliced = polygon.splice(0, bestOffset);
polygon.splice(polygon.length, 0, ...spliced);
}
}
/**
* Sample additional points for a polygon to better match its pair.
* @param {KUTE.polygonObject} polygon the target polygon
* @param {number} numPoints the amount of points needed
*/
function addPoints(polygon, numPoints) {
const desiredLength = polygon.length + numPoints;
const step = polygonLength(polygon) / numPoints;
let i = 0;
let cursor = 0;
let insertAt = step / 2;
let a;
let b;
let segment;
while (polygon.length < desiredLength) {
a = polygon[i];
b = polygon[(i + 1) % polygon.length];
segment = distanceSquareRoot(a, b);
if (insertAt <= cursor + segment) {
polygon.splice(i + 1, 0, segment
? midPoint(a, b, (insertAt - cursor) / segment)
: a.slice(0));
insertAt += step;
} else {
cursor += segment;
i += 1;
}
}
}
/**
* Split segments of a polygon until it reaches a certain
* amount of points.
* @param {number[][]} polygon the target polygon
* @param {number} maxSegmentLength the maximum amount of points
*/
function bisect(polygon, maxSegmentLength = Infinity) {
let a = [];
let b = [];
for (let i = 0; i < polygon.length; i += 1) {
a = polygon[i];
b = i === polygon.length - 1 ? polygon[0] : polygon[i + 1];
// Could splice the whole set for a segment instead, but a bit messy
while (distanceSquareRoot(a, b) > maxSegmentLength) {
b = midPoint(a, b, 0.5);
polygon.splice(i + 1, 0, b);
}
}
}
/**
* Checks the validity of a polygon.
* @param {KUTE.polygonMorph} polygon the target polygon
* @returns {boolean} the result of the check
*/
function validPolygon(polygon) {
return Array.isArray(polygon)
&& polygon.every((point) => Array.isArray(point)
&& point.length === 2
&& !Number.isNaN(point[0])
&& !Number.isNaN(point[1]));
}
/**
* Returns a new polygon and its length from string or another `Array`.
* @param {KUTE.polygonMorph | string} input the target polygon
* @param {number} maxSegmentLength the maximum amount of points
* @returns {KUTE.polygonMorph} normalized polygon
*/
function getPolygon(input, maxSegmentLength) {
let skipBisect;
let polygon;
if (typeof (input) === 'string') {
const converted = pathStringToPolygon(input, maxSegmentLength);
({ polygon, skipBisect } = converted);
} else if (!Array.isArray(input)) {
throw Error(`${invalidPathValue}: ${input}`);
}
/** @type {KUTE.polygonMorph} */
const points = [...polygon];
if (!validPolygon(points)) {
throw Error(`${invalidPathValue}: ${points}`);
}
// TODO skip this test to avoid scale issues?
// Chosen epsilon (1e-6) is problematic for small coordinate range, we now use 1e-9
if (points.length > 1 && distanceSquareRoot(points[0], points[points.length - 1]) < epsilon) {
points.pop();
}
if (!skipBisect && maxSegmentLength
&& !Number.isNaN(maxSegmentLength) && (+maxSegmentLength) > 0) {
bisect(points, maxSegmentLength);
}
return points;
}
/**
* Returns two new polygons ready to tween.
* @param {string} path1 the first path string
* @param {string} path2 the second path string
* @param {number} precision the morphPrecision option value
* @returns {KUTE.polygonMorph[]} the two polygons
*/
function getInterpolationPoints(path1, path2, precision) {
const morphPrecision = precision || defaultOptions$1.morphPrecision;
const fromRing = getPolygon(path1, morphPrecision);
const toRing = getPolygon(path2, morphPrecision);
const diff = fromRing.length - toRing.length;
addPoints(fromRing, diff < 0 ? diff * -1 : 0);
addPoints(toRing, diff > 0 ? diff : 0);
rotatePolygon(fromRing, toRing);
return [roundPath(fromRing), roundPath(toRing)];
}
// Component functions
/**
* Returns the current `d` attribute value.
* @returns {string} the `d` attribute value
*/
function getSVGMorph(/* tweenProp */) {
return this.element.getAttribute('d');
}
/**
* Returns the property tween object.
* @param {string} _ the property name
* @param {string | KUTE.polygonObject} value the property value
* @returns {KUTE.polygonObject} the property tween object
*/
function prepareSVGMorph(/* tweenProp */_, value) {
const pathObject = {};
// remove newlines, they brake JSON strings sometimes
const pathReg = new RegExp('\\n', 'ig');
let elem = null;
if (value instanceof SVGPathElement) {
elem = value;
} else if (/^\.|^#/.test(value)) {
elem = selector(value);
}
// first make sure we return pre-processed values
if (typeof (value) === 'object' && value.polygon) {
return value;
} if (elem && ['path', 'glyph'].includes(elem.tagName)) {
pathObject.original = elem.getAttribute('d').replace(pathReg, '');
// maybe it's a string path already
} else if (!elem && typeof (value) === 'string') {
pathObject.original = value.replace(pathReg, '');
}
return pathObject;
}
/**
* Enables the `to()` method by preparing the tween object in advance.
* @param {string} prop the `path` property name
*/
function crossCheckSVGMorph(prop) {
if (this.valuesEnd[prop]) {
const pathArray1 = this.valuesStart[prop].polygon;
const pathArray2 = this.valuesEnd[prop].polygon;
// skip already processed paths
// allow the component to work with pre-processed values
if (!pathArray1 || !pathArray2
|| (pathArray1 && pathArray2 && pathArray1.length !== pathArray2.length)) {
const p1 = this.valuesStart[prop].original;
const p2 = this.valuesEnd[prop].original;
// process morphPrecision
const morphPrecision = this._morphPrecision
? parseInt(this._morphPrecision, 10)
: defaultOptions$1.morphPrecision;
const [path1, path2] = getInterpolationPoints(p1, p2, morphPrecision);
this.valuesStart[prop].polygon = path1;
this.valuesEnd[prop].polygon = path2;
}
}
}
// All Component Functions
const svgMorphFunctions = {
prepareStart: getSVGMorph,
prepareProperty: prepareSVGMorph,
onStart: onStartSVGMorph,
crossCheck: crossCheckSVGMorph,
};
// Component Full
const SVGMorph = {
component: 'svgMorph',
property: 'path',
defaultValue: [],
Interpolate: coords,
defaultOptions: { morphPrecision: 10 },
functions: svgMorphFunctions,
// Export utils to global for faster execution
Util: {
// component
addPoints,
bisect,
getPolygon,
validPolygon,
getInterpolationPoints,
pathStringToPolygon,
distanceSquareRoot,
midPoint,
approximatePolygon,
rotatePolygon,
// svg-path-commander
pathToString,
pathToCurve,
getPathLength,
getPointAtLength,
getDrawDirection,
roundPath,
},
};
const Components = {
EssentialBoxModel: BoxModelEssential,
ColorsProperties: colorProperties,
HTMLAttributes: htmlAttributes,
OpacityProperty,
TextWriteProp: TextWrite,
TransformFunctions,
SVGDraw: SvgDrawProperty,
SVGMorph,
};
// init components
Object.keys(Components).forEach((component) => {
const compOps = Components[component];
Components[component] = new Animation(compOps);
});
var version = "2.2.0alpha2";
// @ts-ignore
/**
* A global namespace for library version.
* @type {string}
*/
const Version = version;
// KUTE.js standard distribution version
const KUTE = {
Animation,
Components,
// Tween Interface
Tween,
fromTo,
to,
// Tween Collection
TweenCollection,
allFromTo,
allTo,
// Tween Interface
Objects,
Util,
Easing,
CubicBezier,
Render,
Interpolate: interpolate,
Process,
Internals: internals,
Selector: selector,
Version,
};
export { KUTE as default };